Math 120: Calculus	Name:	
Final Exam	MWF Instructor:	
May 8, 1997	Tutorial Section:	

Calculators are not allowed. Hand in this answer page only. Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 25 multiple choice questions, worth 6 points each.

You are taking this exam under the honor code.

What is the coefficient of x^8y^2 in the expansion of $(x+y)^{10}$? 45 10 8 90 10! Suppose that 1/3 of the people in a certain population were born in a month that ends in the letter "r." Suppose that three people are chosen at random. What is the probability that exactly one of the three was born in a month ending in the letter "r?" 4/9 1/3 1 2/3 1/2 Find the slope of the tangent line to the graph of $y = e^{\sin x}$ at $x = \pi/2$. $0 \ 1 \ e \ -1 \ 1/e$ On what interval(s) is the function $f(x) = xe^{x^2}$ increasing? $(-\infty,\infty)$ $(0,\infty)$ $(-\infty,0)$ It is never increasing $(-\infty,-\sqrt{2}) \cup (\sqrt{2},\infty)$ Simplify $\log_2 48 - \log_2 3$ $4 \log_2 45 \ 16 \ 2 \ 8$ If $f(x) = \frac{\ln x}{x}$, find f'(e). $0 \frac{1}{e} \frac{1}{e^2} - \frac{1}{e} - \frac{1}{e^2}$ Use logarithmic differentiation to find $\frac{dy}{d_{c}}$ for $y = \frac{e^{x^2}\sqrt{x^2+1}}{5}$

$$\frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^2+1}}{x^5} \left[2x + \frac{x}{x^2+1} - \frac{5}{x} \right] \frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^2+1}}{x^5} \left[\frac{2x}{e^{x^2}} + \frac{x}{x^2+1} - \frac{5}{x} \right] \frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^2+1}}{x^5} \left[\frac{2x}{e^{x^2}} + \frac{2x}{x^2+1} - 5x^4 \right] \frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^2+1}}{x^5} \left[2x + \frac{2x}{x^2+1} - \frac{5}{x} \right] \frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^2+1}}{x^5} \left[2x + \frac{2x}{x^2+1} - \frac{5}{x} \right] \frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^2+1}}{x^5} \left[2x + \frac{2x}{x^2+1} - \frac{5}{x^5} \right] \frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^2+1}}{x^5} \left[2x + \frac{2x}{x^2+1} - \frac{5}{x^5} \right] \frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^2+1}}{x^5} \left[2x + \frac{2x}{x^2+1} - \frac{5}{x^5} \right] \frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^2+1}}{x^5} \left[2x + \frac{2x}{x^2+1} - \frac{5}{x^5} \right] \frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^2+1}}{x^5} \left[2x + \frac{2x}{x^2+1} - \frac{5}{x^5} \right] \frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^2+1}}{x^5} \left[2x + \frac{2x}{x^2+1} - \frac{5}{x^5} \right] \frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^2+1}}{x^5} \left[2x + \frac{2x}{x^2+1} - \frac{5}{x^5} \right] \frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^2+1}}{x^5} \left[2x + \frac{2x}{x^2+1} - \frac{5}{x^5} \right] \frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^2+1}}{x^5} \left[2x + \frac{2x}{x^2+1} - \frac{5}{x^5} \right] \frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^2+1}}{x^5} \left[2x + \frac{2x}{x^2+1} - \frac{5}{x^5} \right] \frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^2+1}}{x^5} \left[2x + \frac{2x}{x^2+1} - \frac{5}{x^5} \right] \frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^2+1}}{x^5} \left[2x + \frac{2x}{x^2+1} - \frac{5}{x^5} \right] \frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^2+1}}{x^5} \left[2x + \frac{2x}{x^2+1} - \frac{5}{x^5} \right] \frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^2+1}}{x^5} \left[2x + \frac{2x}{x^5} + \frac{5}{x^5} \right] \frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^2+1}}{x^5} \left[2x + \frac{2x}{x^5} + \frac{5}{x^5} \right] \frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^2+1}}{x^5} \left[2x + \frac{2x}{x^5} + \frac{5}{x^5} \right] \frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^2+1}}{x^5} \left[2x + \frac{2x}{x^5} + \frac{5}{x^5} \right] \frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^2+1}}{x^5} \left[2x + \frac{2x}{x^5} + \frac{5}{x^5} \right] \frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^2+1}}{x^5} \left[2x + \frac{2x}{x^5} + \frac{5}{x^5} \right] \frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^5}}{x^5} \left[2x + \frac{2x}{x^5} + \frac{5}{x^5} \right] \frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^5}}{x^5} \left[2x + \frac{2x}{x^5} + \frac{5}{x^5} \right] \frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^5}}{x^5} \left[2x + \frac{2x}{x^5} + \frac{5}{x^5} \right] \frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^5}}{x^5} \left[2x + \frac{2x}{x^5} + \frac{5}{x^5} \right] \frac{dy}{dx} = \frac{e^{x^2}\sqrt{x^5}}{x^5} \left[2x + \frac{2x}$$

0 1 -1 The limit does not exist. $-\frac{1}{2}$

Fred invests \$1000 in an account which offers continuous compounding. After exactly 8 years, the amount of money in the account has tripled to \$3000. What annual interest rate is he getting in his account?

 $\frac{1}{8}\ln 3 8\ln 3 \frac{1}{3}\ln 8 3\ln 8 24\ln 2$ A certain substance has a half-life of 4 hours. If a sample has an initial mass of 20 mg, after how many hours will only 15 mg remain?

$$\frac{4\ln(3/4)}{\ln(1/2)} \ \frac{3\ln(1/4)}{\ln(1/2)} \ \frac{4\ln(1/4)}{\ln(1/2)} \ \frac{4\ln(1/3)}{\ln(1/2)} \ \frac{\ln(4/3)}{\ln(1/2)}$$

Recall that $\int \ln x \, dx = x \ln x - x + C$. Using this fact, find $\int_{\cdot}^{\circ} \log_5 x \, dx$. $5 - \frac{4}{\ln 5} \ln 5 - 1 4 \ln 5 - 1 5 \ln 5 - 4$ Let *R* be the region bounded by $y = \sin x$ and the *x*-axis, from x = 0 to $x = \pi$. Find

the volume of the solid generated by rotating R about the y-axis. $2\pi^2 \pi^2 \pi + 2 2\pi^2 + \pi \pi^2 = \pi$

$$2\pi^{2} \pi^{2} \pi + 2 2\pi^{2} + \pi \pi^{2} - \pi$$

Evaluate: $\int_{0}^{\pi/2} \sin^{3} x \, dx$.
 $\frac{2}{3} \pi \, 1 \, \frac{1}{3} \pi - 1$
Evaluate: $\int_{2}^{3} \frac{2x^{3}}{x^{2} - 1} \, dx$
 $5 + \ln\left(\frac{8}{3}\right) 5 + \ln(3) 5 + \ln\left(\frac{9}{4}\right) 3 + \ln\left(\frac{2}{3}\right) 3 + \ln\left(\frac{7}{2}\right)$
Find the length of the curve $y = \int_{0}^{x} \sqrt{t^{2} + 4t + 3} \, dt$ from $x = 1$ to $x = 3$.

8 2 10 6 12
Solve:
$$\int x^3 e^{x^2} dx$$

$$\frac{1}{2} \left(x^2 e^{x^2} - e^{x^2} \right) + C$$

$$\frac{1}{3} \left(x^3 e^{x^2} + 3 e^{x^2} \right) + C$$

$$\frac{1}{6} \left(x^3 e^{x^2} - 3 x^2 e^{x^2} + 6 x e^{x^2} - 6 e^{x^2} \right) + C$$

$$\frac{1}{2} \left(x^3 e^{x^2} - 6 e^{x^2} \right) + C$$

$$\frac{1}{6} \left(x^3 e^{x^2} - 6 x e^{x^2} \right) + C$$
Let $f(x) = \sqrt{x + 4}$. Find the second dec

Let $f(x) = \sqrt{x+4}$. Find the second degree Taylor polynomial for f(x) and evaluate

it at x = 1 (i.e plug x = 1 into the second degree Taylor polynomial). $\frac{143}{64} \frac{17}{8} \sqrt{5} + \frac{7}{8} \frac{23}{8} \frac{45}{16}$ Find the sum of the infinite series: $\frac{4}{3} - \frac{4}{9} + \frac{4}{27} - \frac{4}{81} + \frac{4}{243} - \frac{4}{729} + \dots$ $1\frac{5}{3}\frac{6}{5}\frac{5}{4}\frac{2}{3}$ Find the area bounded by the graphs of the following equations

$$y = \frac{1}{x^2}, y = -x^2, x = 1, x = 2$$

17/6

- 13/5
- 19/4
- 11/3
- 21/7

Let R be the region bounded by the graphs of $y = x^3$, and $y = x^2$. Find the volume of the solid generated by rotating R about the x-axis.

- $(2/35)\pi$
- $(4/37)\pi$
- $(39/121)\pi$
- $(141/2)\pi$
- $(3/2)\pi$

A spring of natural length 10 in. stretches 1.5 in. under a force of 8 lb. Find the work done in stretching the spring from a length of 11 in. to a length of 13 in.

64/3 in.-lb 59/3 in.-lb 58/3 in.-lb 61/3 in.-lb 63/3 in.-lb

A fishtank has a rectangular base of width 2 ft and length 4 ft. The sides are rectangular and have height 3 ft. If the tank is filled with water weighing 62.5 lb/ft^3 , find the work required to pump all the water over the top of the tank.

2250 ft-lb 1145 ft-lb 1235 ft-lb 3321 ft-lb 2567 ft-lb Let $f(x) = 3\sqrt{x+1}$. Find the average value of f(x) on the interval [-1, 8]. 6 5.5 6.5 4 4.5

$$f(x) = \int_{2}^{x^{4}} \frac{t}{\sqrt{t^{3} + 2}} dt$$

Find f'(x). $4x^7/\sqrt{x^{12}+2}$ $x/\sqrt{x^4+2}$ $4x^7/\sqrt{x^7+2}$ $x^4/\sqrt{x^4+2}$ $x^4/\sqrt{x^{12}+2}$

Let R be the region bounded by the graphs of y = 1/x, x = 1, x = 3 and y = 0. Find the volume of the solid generated by rotating R about the x-axis.

 $2\pi/3 \ 3\pi/2 \ 2\pi \ 3\pi \ 2\pi/5$

Let