Math 120 – Final Exam Friday, December 15, 2000

Section:_____

		1 /	a total of 150 points on 11
			are missing from your copy,
	· ·	- 0 0	f the problems are multiple
	-	· ·	n. Be sure to indicate your
	_	- ,	through that letter on the wed extra time to fill in the
	•	as ended if they forget to d	
	grid arter the exam h	ias chaca ir they lorget to e	to so during the exam.
1.	a b c d e	11. a b c d e	21. a b c d e
2.	a b c d e	12. a b c d e	22. a b c d e
3.	abcde	13. a b c d e	23. a b c d e
4.	abcde	14. a b c d e	24. a b c d e
5.	a b c d e	15. a b c d e	25. a b c d e
6.	a b c d e	16. a b c d e	26. a b c d e
7.	[a][b][c][d][e]	17. a b c d e	27. a b c d e
8.	[a][b][c][d][e]	18. a b c d e	28. a b c d e
9.	a b c d e	19. a b c d e	29. a b c d e
10.	abcde	20. a b c d e	30. a b c d e
Sign the following honor code statement:			

"On my honor, I have neither given nor received unauthorized aid on this

exam."

- 1. Suppose $x^3 \le f(x) \le x^2$ for $-1 \le x \le 1$. Which of the following must be true
 - (a) f(x) is always positive.
 - (b) $0 \le \int_{-1}^{1} f(x) dx \le \frac{2}{3}$
 - (c) $\frac{1}{4} \le \int_{-1}^{1} f(x) \, dx \le \frac{1}{3}$
 - (d) $\int_{-1}^{1} f(x) dx$ is negative.
 - (e) f(1) = 0
- **2.** Find the area of the region enclosed by y = x and $y = \sqrt{x}$.

 - (a) $\frac{1}{2}$ (b) -1 (c) 0 (d) $\frac{1}{6}$ (e) 4

- 3. Suppose the natural length of a spring is 40cm and a 20N force is required to hold it at 50cm. Find the work required to stretch the spring from 40cm to 50cm.
 - (a) 1J
- (b) .001J
- (c) 1000J
- (d) 50J
- (e) .05J

- **4.** Compute the average value of sin(x) over the interval from x=0 to $x = \pi$.

- (a) 0 (b) $\frac{\pi}{2}$ (c) 1 (d) $\frac{2}{\pi}$ (e) 2π

- **5.** Which of the following is equal to the derivative of $f(x) = \ln|\sin(x)|$?
 - (a) $sin^2(x)$ (b) tan(x) (c) sec(x)
- (d) csc(x) (e) cot(x)

6. Compute

$$\int_1^2 \frac{e^{\frac{1}{x}}}{x^2} \ dx.$$

- (a) 1 (b) $\frac{e}{2} e^{\frac{1}{2}}$ (c) $e \sqrt{e}$
 - (d) $e^{\frac{1}{x}}$ (e) $\frac{1}{4}$

7. Which of the following is a Riemann Sum approximating the area under the curve $y = \sqrt{x+3}$ between x = 1 and x = 3?

(a)
$$\int_1^3 \sqrt{x+3} \ dx$$
 (b) $\sum_{k=1}^4 \frac{1}{2} \sqrt{\frac{k}{2}}$ (c) $\sum_{k=1}^4 \frac{1}{2} \sqrt{4+\frac{k}{2}}$

(d)
$$1 + \sqrt{2}$$
 (e) $\frac{1}{2}(1 + \sqrt{2} + \sqrt{3} + \sqrt{4})$

8. According to the Fundamental Theorem of Calculus, what is g'(x) when $g(x) = \int_{x^2}^2 t - 3 \ dt.$

(a)
$$6x - 2x^3$$
 (b) $\frac{(x^2-3)^2}{2}$ (c) $3x^2 - 6x$

(b)
$$\frac{(x^2-3)^2}{2}$$

(c)
$$3x^2 - 6x$$

(d)
$$4t^3 - 6$$
 (e) $2t$

- 9. Compute the volume of the solid generated by rotating the region between $y = x^2$ and $y = x^3$ around the y-axis.

 - (a) π (b) $\frac{\pi}{10}$ (c) $\frac{1}{10}$ (d) $\frac{1}{20}$ (e) 2π

- 10. Which of the following represents the work done by splashing all of the water out of a rectangular tub of length 5m, width 2m and depth 3m?
 - (a) $\int_0^2 9800x^4 dx$ (b) $\int_2^5 98000x dx$ (c) $\int_3^5 98000x^4 dx$

 - (d) $\int_2^3 98000x^5 dx$ (e) $\int_0^3 98000x dx$

- 11. According to L'Hospital's Rule, what is the limit of the fraction $\frac{\sin(2\pi x)}{\cos(\pi x)}$ as x approaches $\frac{1}{2}$?

- (a) 0 (b) π (c) 2 (d) $\frac{\pi^2}{8}$ (e) 4π

- **12.** Compute $\int_0^1 xe^x dx$.
 - (a) $e + e^2$ (b) 1 + e (c) 1 e (d) 1 (e) e

13. Compute $\int_0^{\frac{\pi}{4}} \cos^2(x) \ dx$.

(a) $-\frac{\pi}{8}$ (b) $\frac{\pi}{8} + \frac{1}{4}$ (c) 14 (d) $\pi + \frac{1}{4}$ (e) $\frac{\pi}{4}$

14. Compute

$$\int_0^{\frac{\pi}{4}} sec^4(x)tan(x) \ dx.$$

(a) $\frac{3}{4}$ (b) $\frac{4}{3}$ (c) $\frac{1}{2}$ (d) $\frac{2}{3}$ (e) $\frac{3}{2}$

- **15.** Which of the following integrals would be used to solve $\int \frac{x^3}{\sqrt{1+x^2}} dx$ by trigonometric substitution?
 - (a) $\int sin(\theta)tan(\theta) d\theta$
 - (b) $\int cos(\theta) d\theta$
 - (c) $\int \sin(\theta) d\theta$
 - (d) $\int tan(\theta) d\theta$
 - (e) $\int sec(\theta)tan^3(\theta) d\theta$

16. Use logarithmic differentiation to compute the derivative of $y = \frac{x^5(x+7)^4}{(x+2)^3(x+5)^2}$.

(a)
$$y' = \frac{5}{x} - \frac{4}{x+7} + \frac{3}{x+2} - \frac{2}{x+5}$$

(b)
$$y' = \frac{5}{x} + \frac{4}{x+7} - \frac{3}{x+2} + \frac{2}{x+5}$$

(c)
$$y' = y(5x + 4(x+7) - 3(x+2) - 2(x+5))$$

(d)
$$y' = y(\frac{5}{x} + \frac{4}{x+7}) - \frac{3}{x+2} - \frac{2}{x+5}$$

(e)
$$y' = y(\frac{5}{x} + \frac{4}{x+7} - \frac{3}{x+2} - \frac{2}{x+5})$$

17. How would you rewrite $\frac{6}{(x-1)(x+2)}$ in order to find its antiderivative by the method of partial fractions?

(a)
$$\frac{1}{x-1} - \frac{5}{x+2}$$

(a)
$$\frac{1}{x-1} - \frac{5}{x+2}$$
 (b) $\frac{4x}{x-1} - \frac{2x+3}{x+2}$ (c) $\frac{3}{x-1} - \frac{1}{x+2}$

(c)
$$\frac{3}{x-1} - \frac{1}{x+2}$$

(d)
$$\frac{2}{x-1} - \frac{2}{x+2}$$

(d)
$$\frac{2}{x-1} - \frac{2}{x+2}$$
 (e) $\frac{7}{x-1} - \frac{x}{x+2}$

18. Find the y-coordinate of the centroid of the region bounded by y =cos(x), y = 0, x = 0 and $x = \frac{\pi}{2}$. The area of this region is 1 square

(a)
$$\int_0^{\frac{\pi}{2}} \sin^2(x) \ dx$$

(b)
$$\frac{1}{2} \int_0^{\frac{\pi}{2}} x \cos(x) \ dx$$

(c)
$$\frac{1}{2} \int_0^{\frac{\pi}{2}} \cos^2(x) \ dx$$

(d)
$$\frac{\pi}{2} \int_0^{\frac{\pi}{2}} \cos(x) - \sin(x) \, dx$$

(e)
$$\frac{1}{4} \int_0^{\frac{\pi}{4}} \cos^4(x) \ dx$$

- 19. Which of the following integrals represents the length along the curve $y = 3x^2 5$ from x = 1 to x = 4?
 - (a) $\int_{1}^{4} \sqrt{1 + 36x^2} \ dx$
 - (b) $\int_{1}^{4} \sqrt{1+6x} \ dx$
 - (c) $\int_1^4 2\pi (3x^2 5)\sqrt{1 + 36x^2} \ dx$
 - (d) $\int_1^4 2\pi (3x^2 5)\sqrt{1 + 6x} \ dx$
 - (e) $\int_{1}^{4} \sqrt{1-6x^2} \ dx$
- **20.** Find the surface area generated by rotating the curve $y = (x-2)^{\frac{3}{2}}$ between x=2 and x=5 around the x-axis.
 - (a) $\int_2^5 \sqrt{1 + \frac{9}{4}(x-2)} \ dx$
 - (b) $\int_2^5 2\pi (x-2)^{\frac{3}{2}} \sqrt{1 + \frac{9}{4}(x-2)} \ dx$
 - (c) $\int_2^5 2\pi (x-2)^{\frac{3}{2}} \sqrt{1+(x-5)} \ dx$
 - (d) $\int_2^5 2\pi (x-2)^{\frac{3}{2}} \sqrt{1+\frac{3}{2}(x-2)^{\frac{1}{2}}} dx$
 - (e) $\int_2^5 \sqrt{1 + \frac{3}{2}(x-5)} \ dx$
- **21.** If the demand function is $p = 5 \frac{x}{40}$ and the selling price is \$4, find the consumer surplus.
 - (a) $\int_0^{4.9} \frac{1}{10} \frac{x}{40} dx$
 - (b) $\int_0^{40} \frac{1}{10} \frac{x}{40} \, dx$
 - (c) $\int_0^{4.9} 5 \frac{x}{40} dx$
 - (d) $\int_0^{4.9} 1 \frac{x}{40} \, dx$
 - (e) $\int_0^{40} 1 \frac{x}{40} \, dx$

- 22. If you flip a fair coin five times, what is the probability of getting at least four heads?

- (a) $\frac{3}{32}$ (b) $\frac{3}{16}$ (c) $\frac{3}{8}$ (d) $\frac{1}{32}$ (e) $\frac{1}{8}$

- 23. An unfair coin has a sixty percent chance of coming up tails $(q=\frac{3}{5})$. In flipping the coin five times, what is the chance of getting exactly four heads?
 - (a) $10(\frac{2}{5})^3(\frac{3}{5})^2$ (b) $10(\frac{2}{5})^4(\frac{3}{5})$ (c) $5(\frac{2}{5})^4(\frac{3}{5})$

- (d) $6(\frac{2}{5})^3(\frac{3}{5})$ (e) $5(\frac{3}{5})^4(\frac{2}{5})$

- **24.** Suppose f(0) = f'(0) = f''(0) = 4, $f^{(3)}(0) = 12$ and $f^{(4)}(0) = 72$. Which of the following is the fourth Taylor polynomial for f(x)?
 - (a) $4+4x+2x^2+2x^3+3x^4$
 - (b) $4 + 2x x^2 + 2x^3 + 3x^4$
 - (c) $4-4x+2x^2-2x^3+3x^4$
 - (d) $1+4x+x^2+x^3+x^4$
 - (e) $4-4x+2x^2-x^3+x^4$

- **25.** Suppose that the second Taylor polynomial for f(x) is $P_2(x) = 3 + x + x + 2$ $5x^2$. What approximation for f(.1) does this give?
 - (a) 5.13
- (b) 325
- (c) 1.35
- (d) 3.15
- (e) 2.513

- **26.** Give an upper bound on the error in approximating e^{-1} by $P_4(-1) = \frac{9}{24}$ by applying Taylor's Theorem.

 - (a) $\frac{e}{3(4!)}$ (b) $\frac{1}{3(5!)}$ (c) $\frac{e}{6!}$ (d) $\frac{1}{8!}$ (e) $\frac{1}{5!}$

- 27. What integral represents the hydrostatic force on the end of a rectangular tub of width 2m and depth 5m filled with water?
 - (a) $9800 \int_0^5 5x \ dx$ (b) $9800 \int_0^2 5x \ dx$ (c) $9800 \int_0^5 2x \ dx$

 - (d) $9800 \int_0^2 2x \ dx$ (e) $9800 \int_0^5 x^2 \ dx$

- **28.** Find a Taylor Series for the derivative of $sinh(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$
 - (a) $1 + \frac{x^4}{4!} + \frac{x^8}{8!} + \dots$
 - (b) $1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$
 - (c) $\frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots$
 - (d) $\frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots$
 - (e) $x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$
- **29.** Give a Taylor Series expansion for $tan^{-1}(x)$ if the Taylor Series expansion for $\frac{1}{1+x^2} = \sum_{k=0}^{\infty} (-1)^k x^{2k}$.
 - (a) $\sum_{k=1}^{\infty} (-1)^k x^{2k+1}$
 - (b) $\sum_{k=0}^{\infty} (-1)^k x^{2k+1}$
 - (c) $\sum_{k=0}^{\infty} (-1)^{k+1} \frac{x^{2k}}{k+1}$
 - (d) $\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1}$
 - (e) $\sum_{k=0}^{\infty} (-1)^k (2k) x^{2k-1}$
- **30.** In class, we found a Taylor Series expansion for $\int e^{-x^2} dx$ by integrating the expansion for e^u with $u = -x^2$. What is the Radius of Convergence of the resulting Taylor Series expansion?
 - (a) ∞
- (b) 10
- (c) 2
- (d) 1
- (e) 0