Multiple Choice

This test consists of 12 multiple-choice questions and four partial credit questions. The correct answer to each multiple choice question is (a).

1. (5 pts.) If A dollars are invested at an annual rate r compounded monthly, how much money will be in the investment account after 2 years?

(a)
$$A(1+\frac{r}{12})^{24}$$
 (b) $A(1+\frac{r}{6})^{12}$ (c) $A(1+r)^2$

(d)
$$(A + \frac{r}{12})^{12}$$
 (e) Ae^{24r}

2. (5 pts.) For what values of r is the function $y = e^{rx}$ a solution of the differential equation y'' - 3y' + 2y = 0?

(a) r = 1, 2 (b) r = 0, 2, -2 (c) r = 2, 3(d) r = 0 (e) r = -1

3. (5 pts.) What amount should be invested at an annual interest rate of 4%, compounded continuously, in order for the investment to reach \$100,000 in 25 years?

(a) $100,000 \cdot e^{-1}$ (b) $100,000 \cdot e$ (c) $100,000 \cdot 1.04^{-25}$

(d)
$$100,000 \cdot 1.04^{25}$$
 (e) $100,000 \cdot 25^{-1.04}$

4. (5 pts.) A bacteria culture, growing exponentially, starts with 500 bacteria. After 2 hours there are 1200 bacteria. Find the number of bacteria after 5 hours. In the answers, the notation $\exp(x)$ stands for the exponential e^x .

(a)
$$500 \cdot \exp\left(\frac{5}{2}\ln\frac{12}{5}\right)$$
 (b) $500 \cdot \exp\left(\frac{2}{5}\ln\frac{5}{12}\right)$ (c) $500 \cdot \left(\frac{12}{5}\right)^3$
(d) $500 \cdot \exp\left(\frac{5}{12}\right)$ (e) 2250

5. (5 pts.) A radioactive substance has half life of 100 years. If a sample has a mass of 500g, when will it be reduced to 20g?

(a)
$$\frac{100 \ln 25}{\ln 2}$$
 years. (b) 100 ln 50 years. (c) 1,250 years.

(d) $\frac{100 \text{ in } 2}{\ln 5}$ years. (e) 2,500 years.

6. (5 pts.) Find the coefficient of a^2b^7 in the expansion of $(a+b)^9$.

Sample: Math 120, Exam III

(a)	36	(b)	21	(c)	7	(d)	84	(e)	14
-----	----	-----	----	-----	---	-----	----	-----	----

7. (5 pts.) A certain die has a shape of a triangle, with sides labelled 1,2,3. When it is rolled, each side appears on the bottom with probability of $\frac{1}{3}$. If die is rolled 4 times, what is the probability that the side labelled "2" will appear on the bottom at least 2 times?

(a)
$$6\left(\frac{1}{3}\right)^2 \left(\frac{2}{3}\right)^2 + 4\left(\frac{1}{3}\right)^3 \left(\frac{2}{3}\right) + \left(\frac{1}{3}\right)^4$$

(b)
$$\left(\frac{1}{3}\right)^4$$

(c)
$$2\left(\frac{1}{3}\right)^2 \left(\frac{2}{3}\right)^2 + 3\left(\frac{1}{3}\right)^3 \left(\frac{2}{3}\right) + 4\left(\frac{1}{3}\right)^4$$

(d)
$$6\left(\frac{1}{3}\right)^2 + 4\left(\frac{1}{3}\right)^3 + \left(\frac{1}{3}\right)^4$$

(e) $\left(\frac{1}{3}\right)^2 \left(\frac{2}{3}\right)^2$

8. (5 pts.) What approximation of cos(0.6) does the 2nd degree Taylor polynomial of the function f(x) = cos(x) give?

(a)
$$0.82$$
 (b) 1.36 (c) 0.83 (d) 0.825 (e) 1

9. (5 pts.) Find the third degree Taylor polynomial of the function $f(x) = 2\sin(x) + \cos(x)$.

- (a) $1 + 2x \frac{1}{2!}x^2 \frac{2}{3!}x^3$ (b) $1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3$ (c) $x - \frac{2}{3!}x^3$
- (d) $2 \frac{1}{2!}x^2 + \frac{1}{3!}x^3$
- (e) $1 + 2x + \frac{1}{2!}x^2$

10. (5 pts.) Which of the following represents the *k*th Taylor coefficient of the function $f(x) = e^{3x} + e^{x}$?

(a) $\frac{3^k + 1}{k!}$ (b) $\frac{4^k}{k!}$ (c) $\frac{3k + 1}{(3k)!}$ (d) $\frac{4}{k!}$ (e) 3k + 1

11. (5 pts.) Consider the differential equation $y' = y - 2\sin x$. Of the following two functions

(I)
$$y = \cos x + \sin x$$

(II) $y = \cos x + e^{-x}$

which, if any, are solutions of the differential equation?

- (a) (I) only
- (b) (II) only
- (c) (I) and (II)
- (d) Neither is a solution
- (e) It is impossible to determine from the given information.

12. (5 pts.) Find the centroid (center of mass) of the region bounded by $y = 1 - x^4$ and y = 0.

(a)
$$(0, \frac{4}{9})$$
 (b) $(0, \frac{1}{2})$ (c) $(\frac{1}{3}, 0)$ (d) $(\frac{1}{3}, \frac{8}{9})$ (e) $(\frac{1}{2}, 0)$

Partial Credit

13. (10 pts.) Represent 0.15232323232323232... as a fraction or sum of fractions.

14. (10 pts.) Use the linear approximation to the function $f(x) = \sqrt{9+x}$ to approximate $\sqrt{10}$, and estimate the error involved in making the approximation.

15. (10 pts.) In many card games each person receives a 13-card hand dealt at random from a 52-card deck. You should give the answers to the following questions in terms of binomial coefficients. *Don't attempt to express the binomial coefficients as single integers!* The numbers involved may turn out to be very large.

(a) How many different 13-card hands are possible?

(b) A regular deck contains 16 face cards (4 in each suit). How many 13 card hands are there which contain no face cards?

(c) If you are dealt a 13-card hand from a shuffled deck, what is the probability of not getting any face cards?

16. (10 pts.) Suppose that |5y| < 1. Calculate the sum

$$\sum_{k=1}^{\infty} (5y)^k$$