Multiple Choice

This test consists of 12 multiple-choice questions and four partial credit questions. The correct answer to each multiple choice question is (a).

1. (5 pts.) If A dollars are invested at an annual rate r compounded monthly, how much money will be in the investment account after 2 years?
(a) $A\left(1+\frac{r}{12}\right)^{24}$
(b) $\quad A\left(1+\frac{r}{6}\right)^{12}$
(c) $A(1+r)^{2}$
(d) $\left(A+\frac{r}{12}\right)^{12}$
(e) $A e^{24 r}$
2. (5 pts.) For what values of r is the function $y=e^{r x}$ a solution of the differential equation $y^{\prime \prime}-3 y^{\prime}+2 y=0$?
(a) $r=1,2$
(b) $r=0,2,-2$
(c) $r=2,3$
(d) $r=0$
(e) $r=-1$
3. (5 pts.) What amount should be invested at an annual interest rate of 4%, compounded continuously, in order for the investment to reach $\$ 100,000$ in 25 years?
(a) $100,000 \cdot e^{-1}$
(b) $100,000 \cdot e$
(c) $100,000 \cdot 1.04^{-25}$
(d) $100,000 \cdot 1.04^{25}$
(e) $100,000 \cdot 25^{-1.04}$
4. (5 pts.) A bacteria culture, growing exponentially, starts with 500 bacteria. After 2 hours there are 1200 bacteria. Find the number of bacteria after 5 hours. In the answers, the notation $\exp (x)$ stands for the exponential e^{x}.
(a) $500 \cdot \exp \left(\frac{5}{2} \ln \frac{12}{5}\right)$
(b) $500 \cdot \exp \left(\frac{2}{5} \ln \frac{5}{12}\right)$
(c) $500 \cdot\left(\frac{12}{5}\right)^{3}$
(d) $500 \cdot \exp \left(\frac{5}{12}\right)$
(e) 2250
5. (5 pts.) A radioactive substance has half life of 100 years. If a sample has a mass of 500 g , when will it be reduced to 20 g ?
(a) $\frac{100 \ln 25}{\ln 2}$ years.
(b) $100 \ln 50$ years.
(c) 1,250 years.
(d) $\frac{100 \ln 2}{\ln 5}$ years.
(e) 2,500 years.
6. (5 pts.) Find the coefficient of $a^{2} b^{7}$ in the expansion of $(a+b)^{9}$.
(a) 36
(b) 21
(c) 7
(d) 84
(e) 14
7. (5 pts.) A certain die has a shape of a triangle, with sides labelled $1,2,3$. When it is rolled, each side appears on the bottom with probability of $\frac{1}{3}$. If die is rolled 4 times, what is the probability that the side labelled " 2 " will appear on the bottom at least 2 times?
(a) $6\left(\frac{1}{3}\right)^{2}\left(\frac{2}{3}\right)^{2}+4\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)+\left(\frac{1}{3}\right)^{4}$
(b) $\left(\frac{1}{3}\right)^{4}$
(c) $2\left(\frac{1}{3}\right)^{2}\left(\frac{2}{3}\right)^{2}+3\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)+4\left(\frac{1}{3}\right)^{4}$
(d) $6\left(\frac{1}{3}\right)^{2}+4\left(\frac{1}{3}\right)^{3}+\left(\frac{1}{3}\right)^{4}$
(e) $\left(\frac{1}{3}\right)^{2}\left(\frac{2}{3}\right)^{2}$
8. (5 pts.) What approximation of $\cos (0.6)$ does the 2nd degree Taylor polynomial of the function $f(x)=\cos (x)$ give?
(a) 0.82
(b) 1.36
(c) 0.83
(d) 0.825
(e) 1
9. (5 pts.) Find the third degree Taylor polynomial of the function $f(x)=2 \sin (x)+\cos (x)$.
(a) $1+2 x-\frac{1}{2!} x^{2}-\frac{2}{3!} x^{3}$
(b) $1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}$
(c) $x-\frac{2}{3!} x^{3}$
(d) $2-\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}$
(e) $\quad 1+2 x+\frac{1}{2!} x^{2}$
10. (5 pts.) Which of the following represents the k th Taylor coefficient of the function $f(x)=e^{3 x}+e^{x}$?
(a) $\frac{3^{k}+1}{k!}$
(b) $\frac{4^{k}}{k!}$
(c) $\frac{3 k+1}{(3 k)!}$
(d) $\frac{4}{k!}$
(e) $3 k+1$
11. (5 pts.) Consider the differential equation $y^{\prime}=y-2 \sin x$. Of the following two functions

$$
\begin{aligned}
& \text { (I) } y=\cos x+\sin x \\
& \text { (II) } y=\cos x+e^{-x}
\end{aligned}
$$

which, if any, are solutions of the differential equation?
(a) (I) only
(b) (II) only
(c) (I) and (II)
(d) Neither is a solution
(e) It is impossible to determine from the given information.
12. (5 pts.) Find the centroid (center of mass) of the region bounded by $y=1-x^{4}$ and $y=0$.
(a) $\left(0, \frac{4}{9}\right)$
(b) $\left(0, \frac{1}{2}\right)$
(c) $\left(\frac{1}{3}, 0\right)$
(d) $\left(\frac{1}{3}, \frac{8}{9}\right)$
(e) $\left(\frac{1}{2}, 0\right)$

Partial Credit

13. (10 pts.) Represent $0.152323232323232 \ldots$ as a fraction or sum of fractions.
14. (10 pts.) Use the linear approximation to the function $f(x)=\sqrt{9+x}$ to approximate $\sqrt{10}$, and estimate the error involved in making the approximation.
15. (10 pts.) In many card games each person receives a 13 -card hand dealt at random from a 52 -card deck. You should give the answers to the following questions in terms of binomial coefficients. Don't attempt to express the binomial coefficients as single integers! The numbers involved may turn out to be very large.
(a) How many different 13 -card hands are possible?
(b) A regular deck contains 16 face cards (4 in each suit). How many 13 card hands are there which contain no face cards?
(c) If you are dealt a 13 -card hand from a shuffled deck, what is the probability of not getting any face cards?
16. (10 pts.) Suppose that $|5 y|<1$. Calculate the sum

$$
\sum_{k=1}^{\infty}(5 y)^{k}
$$

