# Brief Article 

The Author

November 4, 2004

## MATH 120

## HOMEWORK

## Assignment 3

9-30-02

Let $x_{1}=1, x_{2}=2, x_{3}=2+\varepsilon, \int(x)=x^{2}$
Find pol. of degree $1 p(x)=m x+c$
such that $\max \left\{\left|f\left(x_{i}\right)-p\left(x_{i}\right)\right|: i=1,2,3,\right\}$ is minimal possible.
Solution
$p\left(x_{1}\right)=m+c+B=1=f(1)$
$p\left(x_{2}\right)=2 m+c-B=4=f(2)$
$p\left(x_{3}\right)-2 m+\varepsilon m+c+B=(2+\varepsilon)^{2}=4+4 \varepsilon+\varepsilon^{2}$

$$
f(x)=x^{2}
$$

$x_{1}=1 \quad x_{2}=1+\varepsilon$
$c+B=1$
$c-B=(1+\varepsilon)^{2}$
$2 C=1+(1+\varepsilon)^{2}$
$C=\frac{1+(1+\varepsilon)^{2}}{2}$
$2 B=1-(1+\varepsilon)^{2}$
$\Rightarrow B=\frac{1-(1+\varepsilon)^{2}}{2}$

## Problem 1.

Given $\varepsilon>0, x_{1}=1, x_{2}=1+\varepsilon, f(x)=x^{2}$, find a constant $C$ such that $\max \left\{\left|f\left(x_{i}\right)-C\right|,\left|f\left(x_{2}\right)-C\right|\right\}$ is minimal possible. What is minimal error? What happens when $\varepsilon \rightarrow 0$ ?

## Problem 2.

Let $a$ be a real parameter. Consider the following optimization problem:

$$
\begin{gathered}
x_{1}+x_{2} \rightarrow \text { min } \\
x_{1}^{2}+3 x_{2}^{2} \leqslant a
\end{gathered}
$$

Find the global minimizer for this problem as a function of the parameter $a$.

## Problem 3.

Describe normal cone $N_{\mathbb{R}_{+}^{n}}(x)$ for any point $x \in \mathbb{R}_{+}^{1}$ (positive orthant). Using this description write down necessary and sufficient optimality conditions for the problem

$$
\begin{aligned}
& f(x) \rightarrow \min \\
& x \in \mathbb{R}_{+}^{1},
\end{aligned}
$$

where $f$ is a convex Gâteaux differentiable function.

## Problem 4.

Let $A, B$ be convex subsets in $E$ such that $A \cap B=\oslash$. Prove that there exists $a \in E, a \neq, 0$ such that

$$
\text { inf }<a, x>\operatorname{Let} A, \text { Bbeconvexsubsetsin }
$$

EsuchthatA $\cap B=\oslash$ Let $A, B$ be convex subsets in $E$ such that $A \cap B=\varnothing$

