MATH 120

Exam 3

December 4, 2002

1. For which values of r the function $e^{r x}$ is a solution to the differential equation

$$
y^{\prime \prime}-y=0
$$

A) $r= \pm 1$
B) $r=1$
C) $r=-1$
D) $r= \pm 2$
E) $r=\frac{1}{2}$
2. A bacteria culture grows with constant relative growth rate. The count was 400 after 2 hours and 25,600 after 6 hours. What was the initial population of the culture?
A) 64
B) 32
C) 25
D) 50
E) 100
3. Write the fourth degree Taylor polynomial for the function $f(x)=e^{-2 x}$.
A) $1-2 x+2 x^{2}-\frac{4}{3} x 3+\frac{2}{3} x 4$
B) $1+2 x+2 x^{2}=\frac{4}{3} x 3+\frac{2}{3} x 4$
C) $1-2 x+2 x^{2}-\frac{4}{3} x 3$
D) $\left.1-2 x+2 x^{2} \quad E\right) 1-2 x$
4. Find the Taylor polynomial of degree 5 for the function $\int(x)=\sin x$.
A) $x-\frac{1}{6} x 3$
B) $x-\frac{1}{6} x 3+\frac{1}{120} x 5$
C) $x+\frac{1}{6} x 3+\frac{1}{120} x 5$
D) $x+\frac{1}{6} x 3$
E) $x+75 x 4$
5. Calculate $\binom{6}{3}$.
A) 15
B) 120
C) 20
D) 10
E) 256
6. How many different committees consisting of 3 men and 2 women can be formed from 6 males and 5 females.
A) $\binom{6}{3}$
B) $\binom{5}{2}$
C) $\binom{6}{3}+\binom{5}{2}$
D) $\binom{6}{3}\binom{5}{2}$
E) 20
7. Suppose you toss an honest coin 5 times. What is the probability of getting exactly 2 heads?
A) $\binom{5}{2}\left(\frac{1}{2}\right)^{5}$
B) $\left(\frac{1}{2}\right)^{5}$
C) $\binom{5}{2}$
D) $\binom{5}{2}+\left(\frac{1}{2}\right)^{5}$
E) $\binom{5}{2}\left(\frac{1}{3}\right)^{2}\left(\frac{2}{3}\right)^{3}$
8. Suppose that an initial amount of 1000 is invested at an annual rate of 6 percent. Find the amount that there will be at the end of one year if the interest is compounded quarterly.
A) $1000\left(1+\frac{0.06}{4}\right)^{4}$
B) $1000\left(1+\frac{0.06}{12}\right)^{12}$
C) $1000 e^{0.06}$
D) 1200
E) $1000\left(1+\frac{6}{4}\right)^{4}$
9. Use the linear approximation and estimate the size of the error for $\sqrt{4.2}$ using $f(x)=\sqrt{4+x}$.
A) $2+\frac{0.2}{4}, \mid$ error $\left\lvert\, \leq \frac{(0.2)^{2}}{64}\right.$
B) $2-\frac{0.2}{4}, \mid$ error $\left\lvert\, \leq \frac{(0.2)}{64}^{2}\right.$
C) $2+\frac{4.2}{4}, \mid$ error $\left\lvert\, \leq{\frac{(4.2)^{2}}{32}}^{2}\right.$
D) $2, \mid$ error $\mid \leq 0.2$
E) No Solution
10. Find

$$
\sum_{k=o}^{\infty} \frac{8}{5^{k}}
$$

A) 10
B) 5
C) $\frac{5}{4}$
D) 8
E) $\frac{8}{5}$

You're Done!!!!!

