MATH 120 Exam 3

December 4, 2002

1. For which values of r the function e^{rx} is a solution to the differential equation

$$y^{''} - y = 0$$

A)
$$r = \pm 1$$

$$B) r = 1$$

A)
$$r = \pm 1$$
 B) $r = 1$ C) $r = -1$ D) $r = \pm 2$ E) $r = \frac{1}{2}$

$$D) \quad r = \pm 2$$

E)
$$r = \frac{1}{2}$$

2. A bacteria culture	grows with consta	nt relative growth rate.	The count	${\rm was}\ 400$	after	2 hours
and $25,600$ after 6 hours.	What was the in	itial population of the o	culture?			

A) 64 B) 32

C) 25 D) 50

E) 100

3. Write the fourth degree Taylor polynomial for the function $f(x) = e^{-2x}$.

A)
$$1-2x+2x^2-\frac{4}{3}x3+\frac{2}{3}x4$$
 B) $1+2x+2x^2=\frac{4}{3}x3+\frac{2}{3}x4$ C) $1-2x+2x^2-\frac{4}{3}x3$ D) $1-2x+2x^2$ E) $1-2x$

$$E(x) = (x^2 + 2x^2)^3 + (x^3 + 2x^2)^3$$

- 4. Find the Taylor polynomial of degree 5 for the function $\int (x) = \sin x$.

- A) $x \frac{1}{6}x3$ B) $x \frac{1}{6}x3 + \frac{1}{120}x5$ C) $x + \frac{1}{6}x3 + \frac{1}{120}x5$ D) $x + \frac{1}{6}x3$ E) x + 75x4

5. Calculate $\binom{6}{3}$. A) 15 B) 120 C) 20 D) 10 E) 256

- 6. How many different committees consisting of 3 men and 2 women can be formed from 6 males and 5 females.
 - A) $\binom{6}{3}$
- B) $\binom{5}{2}$ C) $\binom{6}{3}+\binom{5}{2}$ D) $\binom{6}{3}\binom{5}{2}$
- E) 20

- 7. Suppose you toss an honest coin 5 times. What is the probability of getting exactly 2 heads? A) $\binom{5}{2}(\frac{1}{2})^5$ B) $\binom{1}{2}^5$ C) $\binom{5}{2}$ D) $\binom{5}{2}+(\frac{1}{2})^5$ E) $\binom{5}{2}(\frac{1}{3})^2(\frac{2}{3})^3$

- 8. Suppose that an initial amount of 1000 is invested at an annual rate of 6 percent. Find the amount that there will be at the end of one year if the interest is compounded quarterly.
 - A) $1000(1+\frac{0.06}{4})^4$ B) $1000(1+\frac{0.06}{12})^{12}$ C) $1000e^{0.06}$ D) 1200 E) $1000(1+\frac{6}{4})^4$

- 9. Use the linear approximation and estimate the size of the error for $\sqrt{4.2}$ using $f(x) = \sqrt{4+x}$.
- A) $2 + \frac{0.2}{4}, |error| \le \frac{(0.2)^2}{64}$ B) $2 \frac{0.2}{4}, |error| \le \frac{(0.2)^2}{64}$ C) $2 + \frac{4.2}{4}, |error| \le \frac{(4.2)^2}{32}$ D) $2, |error| \le 0.2$

- E) No Solution

- 10. Find $\sum_{k=0}^{\infty} \frac{8}{5^k}$

- A) 10 B) 5 C) $\frac{5}{4}$ D) 8 E) $\frac{8}{5}$

You're Done!!!!!