- 1. Which one of the following is true?
 - (A) If f is not continuous at c, then $\lim_{\substack{x \oslash c}} f(x)$ does not exist (B) If f is not continuous at c, then $\lim_{\substack{x \oslash c^+ \\ x \oslash c^-}} f(x) \neq \lim_{\substack{x \oslash c^- \\ x \oslash c^-}} f(x)$ (C) If $\lim_{\substack{x \oslash c}} f(x) = L$, then f(c) = L(D) If f is continuous at c, then $\lim_{\substack{x \oslash c^+ \\ x \oslash c^-}} f(x) = \lim_{\substack{x \oslash c^- \\ x \oslash c^-}} f(x)$ (E) If f(c) = L, then $\lim_{\substack{x \oslash c}} f(x) = L$

- 2. $\lim_{x \neq 1} (x^2 1) \csc (x 1) =$
 - $(A) \infty$ $(B) \infty$ (C) 0 (D) 1 (E) 2

3.
$$\lim_{x \oslash 1} \frac{x-1}{\sqrt{x+3}-2} =$$

(A) 0 (B)
$$\infty$$
 (C) 4 (D) 2 (E) $\frac{1}{2}$

4. The function
$$f(x) = \frac{\sin x}{-x} = \frac{1}{2}, \quad 0 < x \le \frac{\pi}{2}$$
$$\frac{2x - \pi + 1}{4x - 2\pi + 1}, \quad x > \frac{\pi}{2}$$

(A) is continuous only when
$$0 < x < \frac{11}{2}$$

- (B) is continuous for all values of x
- (C) is discontinuous only at $x = \frac{\pi}{2}$
- (D) is discontinuous only at x = 0
- (E) is discontinuous at both x = 0 and $x = \frac{\pi}{2}$

5.
$$\lim_{h \neq 0} \frac{(\sqrt{2} + h)^5 - (\sqrt{2})^5}{h} =$$
(A) $20\sqrt{2}$ (B) 20 (C) $10\sqrt{2}$ (D) 10 (E) $5\sqrt{2}$

6.

From the graphs, which one of the following appears to be true?

- (A) h is the derivative of f
- (B) g is the derivative of f
- (C) h is the derivative of g
- (D) g is the derivative of h
- (E) f is the derivative of g

7. Suppose f(x) is a function for which f(1) = 2 and f'(1) = 3. If

$$g(x) = \frac{x+1}{f(x)} ,$$

then g'(1) =

(A) -1 (B)
$$\frac{1}{3}$$
 (C) 1 (D) $\frac{2}{3}$ (E) $-\frac{1}{3}$

8. If
$$f(x) = \frac{3x+8}{x+2}$$
, then $f''(0) =$
(A) $\frac{1}{4}$ (B) $-\frac{1}{2}$ (C) $\frac{1}{2}$ (D) $-\frac{1}{4}$ (E) 0

9. The equation of the tangent line to the curve $y = \cot x$ at the point $\left(\frac{\pi}{4}, 1\right)$ is

(A)
$$y = -x + \frac{\pi}{4} + 1$$
 (B) $y = -\frac{1}{2}x + \frac{\pi}{8} + 1$
(C) $y = -\frac{1}{2}x + \frac{\pi}{4} + 1$ (D) $y = -2x + \frac{\pi}{4} + 1$
(E) $y = -2x + \frac{\pi}{2} + 1$

10. If $f(x) = x^2 \cos x$, then $f'\left(\frac{\pi}{2}\right) =$

(A)
$$\frac{\pi^2}{4}$$
 (B) $-\pi$ (C) 0 (D) $-\frac{\pi^2}{4}$ (E) π

11. The position of a body moving along a coordinate line is given by the equation

$$s = t^4 - 4t^3 + 8t^2 - 2t + 1.$$

At a certain time, the acceleration of the body happens to be 4, and then the positic of the body is given by s =

(A) - 2 (B) 4 (C) 1 (D) 3 (E) 0

12. If
$$f(x) = (x^2 - x - \frac{2}{x})^{10}$$
, then $f'(2) =$

(A) 35 (B)
$$10\left(\frac{7}{2}\right)^9$$
 (C) 10 (D) $\left(\frac{7}{2}\right)^{10}$ (E) 70

13. If
$$f(x) = \tan^2 \left(2x + \frac{\pi}{4}\right)$$
, then $f'(0) =$
(A) 2 (B) $\sqrt{2}$ (C) $2\sqrt{2}$ (D) 8 (E) 4

14. The tangent line to the curve

$$x^2 y^2 - 3x + 6y + 8 = 0$$

at the point (2, -1) has equation

(A)
$$y = -\frac{1}{2} x$$
 (B) $y = -2x + 3$ (C) $y = x - 3$
(D) $y = \frac{1}{2} x - 2$ (E) $y = 2x - 5$

- 15. Suppose $f(x) = x^3 3x^2 + 10$. Let M be the largest value of f(x), and m the smallest value of f(x), where the values of x lie in the interval [-2, 3]. Then
 - (A) M = 6 and m = -10 (B) M = 6 and m = -6
 - (C) M = 6 and m = 0 (D) M = 10 and m = -10
 - (E) M = 10 and m = 6

16. A certain function f(x) has <u>derivative</u> given by $f'(x) = x (x - 1)^2 (x - 2)^3$. The function f(x) is increasing on the intervals

- (A) (1, 2) and $(2, \infty)$ (B) (- ∞ , 0) and (2, ∞)
- (C) (0, 1) and $(2, \infty)$
- (D) (0, 1) and (1, 2)
- (E) $(-\infty, 0)$ and (1,2)

- 17. Suppose f(x) is a differentiable function for which f(-1) = -1 and f(1) = 2. Then the mean value theorem or Rolle's theorem implies
 - (A) There is a value of c between -1 and 1 for which $f'(c) = \frac{3}{2}$.
 - (B) There is exactly one value of x between -1 and 1 where f(x) = 0.
 - (C) There is at least one value of x between -1 and 1 where f(x) has either a local maximum or a local minimum.
 - (D) There is a value of c between -1 and 1 for which f'(c) = 0.
 - (E) f(x) is never decreasing anywhere within the interval (-1, 1).