1.
$$\lim_{x \oslash 1} \frac{\tan(x-1)}{x^2 + x - 2} =$$

(A) ∞ (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) 1 (E) $\frac{3}{2}$

2. The tangent line to the graph of the equation

$$y = (x^3 - \pi x^2 + 1) \tan \left(\frac{x}{4}\right)$$

at the point $(\pi, 1)$ has slope equal to

(A) $\pi^2 + 2$ (B) $2\pi^2$ (C) π^2 (D) $\pi^2 + \frac{1}{2}$ (E) $\frac{1}{2} \pi^2$

3. A certain function f satisfies f(2) = 2, f'(2) = 3.

If
$$g(x) = \frac{x}{f(x)}$$
, then $g'(2) =$

(A) $\frac{1}{3}$ (B) $-\frac{1}{2}$ (C) -1 (D) 0 (E) 1

- 4. Just one of these statements is true.
 - (A) If f(x) is discontinuous at x = a, then $\lim_{x \oslash a} f(x)$ does not exist
 - (B) If $\lim_{x \boxtimes a} f(x)$ exists, then f(x) is differentiable at x = a
 - (C) If f(x) is differentiable at x = a, then f(x) is continuous at x = a
 - (D) If $\lim_{x \oslash a^+} f(x) = \lim_{x \oslash a^-} f(x)$, then f(x) is continuous at x = a
 - (E) If f(x) is continuous at x = a, then f(x) is differentiable at x = a

- 5. The tangent line to the graph of the equation $xy^2 + x + y + 1 = 0$ at the point (-1, 1) has equation
 - (A) y = 3x + 4 (B) y = x + 2 (C) $y = \frac{2}{3}x + \frac{5}{3}$ (D) $y = \frac{1}{2}x + \frac{3}{2}$ (E) y = 2x + 3

6. The position s of a body moving on a straight line is given by the equation

s =
$$\int_{1}^{t^2} \sqrt{(x-2)^3 + 1} dx$$
 (t ≥ 1).

At time t = 2, the velocity of the body is

(A) 3 (B) 2 (C) 1 (D) 12 (E) 6

7. The approximate value of

$$f(x) = \frac{x^3 - x}{x^2 + 3} + 1 ,$$

when x = 0.998, found by the method of linearization or differentials, is

(A) 0.995 (B) 0.996 (C) 0.997 (D) 0.998 (E) 0.999

8. A spherical hailstone is growing as it falls, by accumulating ice at a rate of 2 cubic centimeters per minute. At a certain instant its radius is 1 centimeter, and at that time the rate (in centimeters per minute) at which the radius is increasing is

(A)
$$\frac{\pi}{2}$$
 (B) $\frac{1}{6\pi}$ (C) $\frac{1}{2\pi}$ (D) $\frac{1}{4\pi}$ (E) $\frac{\pi}{4}$

9. The local extreme values of the function

$$y = \frac{x^3 - 3x^2}{3x - 1}$$

are given by

- (A) a local maximum at x = 0 and a local minimum at x = 1
- (B) a local maximum at $x = \frac{1}{3}$ only
- (C) a local minimum at x = 0, and a local maximum at x = 1
- (D) a local minimum at x = 0 only
- (E) a local maximum at x = 1 only

- 10. The graph of $y = 2x^6 5x^4$ has
 - (A) two inflection points, at x = -1 and x = 1
 - (B) three inflection points, at x = -1, x = 0 and x = 1
 - (C) only one inflection point, at x = 0
 - (D) only one inflection point, at x = -1
 - (E) only one inflection point, at x = 1

11. The graph of
$$y = \frac{x^2 - 2x + 1}{x^2 + x - 2}$$
 has asymptotes

(A)
$$x = 1$$
 and $x = -2$
(B) $x = -1$, $x = -2$ and $y = 1$
(C) $x = -2$ and $y = 0$
(D) $x = 1$, $x = -2$ and $y = 1$
(E) $x = -2$ and $y = 1$

12. The U.S. Postal Service will accept a box for domestic shipment only if the sum of the length and girth (distance around) does not exceed 108 inches. The length (in inches) of the largest acceptable box with a square end is

(A) 72 (B) 18√2 (C) 54 (D) 36 (E) 18

- 13. A company estimates that the marginal cost (in dollars per item) when producing x items is $2 + \frac{100}{x^2} 0.02x$. If the cost of producing 10 items is \$110, then the cost of producing 100 items is
- (A) \$290 (B) \$131 (C) \$1100 (D) \$352 (E) \$200

14. An object moves along a straight line with acceleration given by a $= \pi \sin(\frac{t}{2}) - 2$. At time t = 0, it is at the position s = 0 and has velocity v = 3. At time $t = \pi$, it is at the position s =

(A)
$$-\pi^2 + 2\pi$$
 (B) $\pi^2 - \pi$ (C) $\pi^2 + 2\pi$
(D) $-\pi^2 - \pi$ (E) $\pi^2 + 7\pi$

15. The area under the graph of $y = \cos^2 x$, $0 \le x \le \frac{\pi}{2}$, is

(A) 2 (B)
$$\pi$$
 (C) $\frac{1}{4}$ (D) $\frac{\pi}{2}$ (E) $\frac{\pi}{4}$

16.
$$\int x \sec^2(x^2) dx =$$

(A)
$$x \tan(x^2) + \frac{1}{2} x^2 \sec^2(x^2) + C$$

(B) $\frac{1}{2} x^3 \tan(x^2) + C$
(C) $2x^2 \sec^2(x^2) + C$
(D) $\frac{1}{2} \tan(x^2) + C$
(E) $\frac{1}{4} x^2 \tan(x^2) + C$

17.
$$\int_{0}^{2} \frac{x^{2}}{\sqrt{1+x^{3}}} dx =$$

(A) 2 (B) $\frac{1}{3}$ (C) 12 (D) $\frac{2}{9}$ (E) $\frac{4}{3}$

18. The area of the region enclosed by the parabolas $y = x^2$ and $x = y^2$ is

(A)
$$\frac{1}{4}$$
 (B) $\frac{2}{3}$ (C) $\frac{2}{5}$
(D) $\frac{1}{3}$ (E) $\frac{1}{2}$

19.

A solid of revolution is formed by revolving the region under the graph of a function y = f(x), $1 \le x \le 4$, about the x-axis. The values of f(1), f(2), f(3), f(4) are as shown. Application of the trapezoidal rule to a certain integral shows that the volume of the solid is approximately

(A) 14π	(B) 10π	(C) 6π	(D) 18π	(E) 8π
· · ·	()	. ,	()	· · ·

20. The region shown in the diagram is revolved about the x-axis. The volume of the solid generated in this way is

(A)
$$\frac{15\pi}{2}$$
 (B) 6π
(C) 8π (D) $\frac{8\pi}{3}$ (E) 16π

21. The region shown in the diagram is revolved about the line x = 1.The volume of the solid generated in this way is

(A) $\frac{8\pi}{3}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{2}$ (D) $\frac{\pi}{6}$ (E) $\frac{5\pi}{6}$

22. The curve in the diagram represents the solution to the initial value problem $\frac{dy}{dx} = \sqrt{x^2 + 2x}$, y(0) = 0.

The length of the curve from x = 0 to x = 1 is

(A) $\frac{3}{2}$ (B) $\sqrt{3}$ (C) 2(D) $\frac{4}{3}$ (E) $\frac{\sqrt{3}+1}{2}$

23. The curve $y = 2x^{3/2}$, $0 \le x \le 1$, is revolved about the y-axis. The area of the surface generated in this way is given by

(A)
$$\int_{0}^{1} 2\pi x \sqrt{1 + 3x^{1/2}} dx$$

(B) $\int_{0}^{1} 4\pi x^{3/2} \sqrt{1 + 4x^3} dx$
(C) $\int_{0}^{1} 2\pi x \sqrt{1 + 4x^3} dx$
(D) $\int_{0}^{1} 4\pi x^{3/2} \sqrt{1 + 9x} dx$
(E) $\int_{0}^{1} 2\pi x \sqrt{1 + 9x} dx$

24. The x-coordinate of the center of mass of a thin plate of constant density covering the region shown in the diagram is

(A)
$$\frac{3}{5}$$
 (B) $\frac{2}{5}$ (C) $\frac{2}{3}$ (D) $\frac{3}{4}$ (E) $\frac{1}{3}$

- 25. A bungee cord whose natural length is 50m is stretched to a length of 52m by a force of 12N. Assume Hooke's Law applies. The work required to stretch the cord from a length of 52m to a length of 55m is (in units of Nm)
 - (A) 21 (B) 48 (C) 36 (D) 63 (E) 24