1. How many of the following statements about the function y = f(x) graphed here are true?

(A)	lim xØ2	f(x) = 0.
(B)	lim x∅1	f(x) does not exist.
(C)	lim xØx₀	$f(x)$ exists at every point x_0 in (-1, 1).
(D)	lim x∅x₀	$f(x)$ exists at every point x_0 in (1,3).

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

2.
$$\lim_{X \oslash -1} \frac{\sqrt{x^2 + 8} - 3}{x + 1} = ?$$

(A) $\frac{3}{2}$ (B) $-\frac{1}{2}$ (C) $\frac{\sqrt{2}}{3}$ (D) $\frac{1}{6}$ (E) $-\frac{1}{3}$

- 3. Here are two assertions:
 - a) If $\lim_{\substack{x \oslash c}} f(x)$ exists but $\lim_{\substack{x \oslash c}} g(x)$ does not exist, then $\lim_{\substack{x \oslash c}} (f(x) + g(x))$ does not exist. $\lim_{\substack{x \oslash c}} x \oslash c$
 - b) If neither $\lim_{\substack{x \oslash C}} f(x)$ nor $\lim_{\substack{x \oslash C}} g(x)$ exists, then $\lim_{\substack{x \oslash C}} (f(x) + g(x))$ does not exist.

Which of the following is correct?

- (A) a) and b) are both false
- (B) b) is true but a) is false
- (C) a) is true but b) is false
- (D) a) and b) are both true

4.
$$\lim_{t \varnothing 4^-} (t - \in t) = ?$$

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

$$f(x) = \frac{x^2 - 3x + 2}{x^3 - 2x^2}$$
 for x near 0?

А

В

С

D

6. Define g(4) in a way that extends

$$g(x) = \frac{x^2 - 16}{x^2 - 3x - 4}$$

to be continuous at x = 4

(A)
$$\frac{4}{3}$$
 (B) 1 (C) $\frac{8}{5}$ (D) $\frac{5}{2}$ (E) $\frac{7}{6}$

7. The slope of the curve $y = \frac{x-1}{x+1}$ at the point (0, -1) is

(A)
$$\frac{3}{7}$$
 (B) - 1 (C) 0 (D) 2 (E) $\frac{7}{3}$

8.
$$y = f(x)$$
 $y = g(x)$ $y = h(x)$

From the graphs, which one of the following appears to be true?

(A) h is the derivative of f

- (B) f is the derivative of g
- (C) h is the derivative of g
- (D) f is the derivative of h
- (E) g is the derivative of f

9. If
$$y = \frac{12}{x} - \frac{4}{x^3} + \frac{1}{x^4}$$
, then

$$\frac{dy}{dx} \bigg|_{x = 1} = ?$$

10. If
$$f(x) = x(x - 1)(x + 1)$$
, then $f''(-1) = ?$

(A) - 6 (B) 0 (C) 2 (D) - 4 (E) 12

11. Suppose that u and v are differentiable functions of x and that

$$u(1) = 6, u'(1) = 0, v(1) = 2, v'(1) = -1.$$

Find the value of $\frac{d}{dx} \begin{pmatrix} u \\ v \end{pmatrix}$ at x = 1. (A) $\frac{1}{4}$ (B) $\frac{3}{2}$ (C) $-\frac{1}{36}$ (D) 2 (E) $-\frac{4}{3}$

- 12. The curves $y = x^2 + ax + b$ and $y = cx x^2$ have a common tangent line at the point (1,0). Then a,b, and c are, respectively,
 - (A) 2,0,1 (B) 1,2,0 (C) -3,2,1 (D) 3,0,1 (E) 0,2,3