1. The accompanying graph shows the position s = f(t) of a body moving on a coordinate line.

When is the body moving backward but speeding up?

(A) (0,3) (B) (9,12) (C) (6,9) (D) (3,6) (E) (3,9)

2. If
$$f(x) = \frac{\sin x}{1 - \cos x}$$
, then $f'(x) = ?$

(A)
$$\frac{2 \sin x \cos x}{(1 - \cos x)^2}$$
 (B) $\frac{1}{\cos x - 1}$

(C)
$$\frac{\cos x}{(1 - \cos x)^2}$$
 (D) $\cot x$

(E)
$$\frac{\cos^2 x - \sin^2 x}{(1 - \cos x)^2}$$

3. If
$$s = [(t^2 - 3)^2 + (2t - 3)^2]^2$$
, then $\frac{ds}{dt}\Big|_{t=2} =$

(A) 48 (B) 12 (C) 32 (D) 16 (E) 24

4. If
$$g(x) = (\sec x + \tan x)^{-1}$$
, then $g'(\frac{\pi}{6}) = ?$

(A) $-\frac{1}{2}$ (B) $\sqrt{3}$ (C) $-\frac{2}{3}$ (D) $\frac{1}{2}$ (E) $-\frac{1}{\sqrt{2}}$

5. The slope of the curve
$$y^4 = y^2 - x^2$$
 at the point $\left(\frac{\sqrt{3}}{4}, \frac{1}{2}\right)$ is

(A) 0 (B)
$$\sqrt{2}$$
 (C) $-\frac{1}{2}$ (D) $\sqrt{3}$ (E) -1

- 6. Two parallel sides of a rectangle are being lengthened at the rate of 2 in/sec while the other two sides are shortened in such a way that the figure remains a rectangle with constant area 50 in². What is the rate of change of the perimeter of the rectangle when the length of an increasing side is 10 in?
 - (A) increasing at 5 in/sec

- (B) decreasing at 4 in/sec
- (C) neither increasing nor decreassing
- (E) increasing at 2 in/sec

(D) decreasing at 1 in/sec

7. The global maximum and the global minimum of the function

 $f(x) = \sin^2 x + \cos x$ on the interval $\left[-\frac{\pi}{2}, \pi \right]$ are

(A) g. max = 1, g. min = 0
(B) g. max = 1, g. min = -1
(C) g. max =
$$\frac{5}{4}$$
, g. min = -1
(D) g. max = $\frac{3}{2}$, g. min = $-\frac{1}{4}$
(E) g. max = -2, g. min = $-\frac{1}{7}$

8. Let y = f(x) be differentiable on the interval [1,3] with f(1) = 0 and f(3) = 2. What value <u>must</u> f'(x) have at some point in the open interval (1,3)?

(A) 2 (B) $\frac{1}{2}$ (C) 3 (D) $\frac{1}{3}$ (E) 1

9. Suppose that the first derivative of y = f(x) is $\frac{dy}{dx} = 6(x - 1)(x - 2)^2 (x - 3)^3.$

Which of the following is true?

- (A) f has one local extreme. A local minimum at x = 2.
- (B) f has two local extrema. A local maximum at x = 1and a local minimum at x = 3.
- (C) f has three local extrema. Local maxima at x = 1 and x = 3 and a local minimum at x = 2.
- (D) f has no local extrema.
- (E) f has 2 local extrema. A local maximum at x = 3and a local minimum at x = 1.

10. The function $y = x + \frac{9}{x-2}$

is increasing on the intervals

(A) $(-\infty, -1)$ and $(5, \infty)$ (B) (-1, 2) and (2, 5)(C) (-1, 2) and $(5, \infty)$ (D) $(-\infty, -1)$ and (2, 5)(E) (2, 5) and $(5, \infty)$

11. The graph of $y = 2x^5 - 10x^4 + 5x - 3$

- (A) has a point of inflection at x = 0 only
- (B) has a point of inflection at x = 0 and x = 3
- (C) is concave up on the interval $(-\infty, 0)$
- (D) has a point of inflection at x = 3 only
- (E) is concave down on the interval $(3, \infty)$