1. The accompanying graph shows the position $s=f(t)$ of a body moving on a coordinate line.

When is the body moving backward but speeding up?
(A) $(0,3)$
(B) $(9,12)$
(C) $(6,9)$
(D) $(3,6)$
(E) $(3,9)$
2. If $f(x)=\frac{\sin x}{1-\cos x}$, then $f^{\prime}(x)=$?
(A) $\frac{2 \sin x \cos x}{(1-\cos x)^{2}}$
(B) $\frac{1}{\cos x-1}$
(C) $\frac{\cos x}{(1-\cos x)^{2}}$
(D) $\cot x$
(E) $\frac{\cos ^{2} x-\sin ^{2} x}{(1-\cos x)^{2}}$
3. If $s=\left[\left(t^{2}-3\right)^{2}+(2 t-3)^{2}\right]^{2}$, then $\left.\frac{d s}{d t}\right|_{t=2}=$
(A) 48
(B) 12
(C) 32
(D) 16
(E) 24
4. If $g(x)=(\sec x+\tan x)^{-1}$, then $g^{\prime}\left(\frac{\pi}{6}\right)=$?
(A) $-\frac{1}{2}$
(B) $\sqrt{3}$
(C) $-\frac{2}{3}$
(D) $\frac{1}{2}$
(E) $-\frac{1}{\sqrt{2}}$
5. The slope of the curve $y^{4}=y^{2}-x^{2}$ at the point $\left(\frac{\sqrt{3}}{4}, \frac{1}{2}\right)$ is
(A) 0
(B) $\sqrt{2}$
(C) $-\frac{1}{2}$
(D) $\sqrt{3}$
(E) -1
6. Two parallel sides of a rectangle are being lengthened at the rate of $2 \mathrm{in} / \mathrm{sec}$ while the other two sides are shortened in such a way that the figure remains a rectangle with constant area $50 \mathrm{in}^{2}$. What is the rate of change of the perimeter of the rectangle when the length of an increasing side is 10 in ?
(A) increasing at $5 \mathrm{in} / \mathrm{sec}$
(B) decreasing at $4 \mathrm{in} / \mathrm{sec}$
(C) neither increasing nor decreassing
(D) decreasing at $1 \mathrm{in} / \mathrm{sec}$
(E) increasing at $2 \mathrm{in} / \mathrm{sec}$
7. The global maximum and the global minimum of the function

$$
f(x)=\sin ^{2} x+\cos x
$$

on the interval $\left[-\frac{\pi}{2}, \pi\right]$ are
(A) g. $\max =1$, g. $\min =0$
(B) g. $\max =1$, g. $\min =-1$
(C) g. $\max =\frac{5}{4}$, g. $\min =-1$
(D) g. $\max =\frac{3}{2}$, g. $\min =-\frac{1}{4}$
(E) g. $\max =-2$, g. $\min =-\frac{1}{2}$
8. Let $y=f(x)$ be differentiable on the interval [1,3] with $f(1)=0$ and $f(3)=2$. What value must $f^{\prime}(x)$ have at some point in the open interval $(1,3)$?
(A) 2
(B) $\frac{1}{2}$
(C) 3
(D) $\frac{1}{3}$
(E) 1
9. Suppose that the first derivative of $y=f(x)$ is

$$
\frac{d y}{d x}=6(x-1)(x-2)^{2}(x-3)^{3}
$$

Which of the following is true?
(A) f has one local extreme. A local minimum at $x=2$.
(B) f has two local extrema. A local maximum at $x=1$ and a local minimum at $x=3$.
(C) f has three local extrema. Local maxima at $\mathrm{x}=1$ and $\mathrm{x}=3$ and a local minimum at $x=2$.
(D) f has no local extrema.
(E) f has 2 local extrema. A local maximum at $x=3$ and a local minimum at $x=1$.
10. The function $y=x+\frac{9}{x-2}$
is increasing on the intervals
(A) $(-\infty,-1)$ and $(5, \infty)$
(B) $(-1,2)$ and $(2,5)$
(C) $(-1,2)$ and $(5, \infty)$
(D) $(-\infty,-1)$ and $(2,5)$
(E) $(2,5)$ and $(5, \infty)$
11. The graph of $y=2 x^{5}-10 x^{4}+5 x-3$
(A) has a point of inflection at $x=0$ only
(B) has a point of inflection at $x=0$ and $x=3$
(C) is concave up on the interval $(-\infty, 0)$
(D) has a point of inflection at $x=3$ only
(E) is concave down on the interval $(3, \infty)$

