1. If $f(x)=\sec x+\tan x$, then $f^{\prime}\left(\frac{\pi}{4}\right)=$?
(a) 0
(b) $4+2 \sqrt{3}$
(c) does not exist(d) $\frac{1+2 \sqrt{3}}{3}$
(e) $2+\sqrt{2}$
2. If $f(x)=\left(\frac{x^{3}+1}{x^{2}+1}\right)^{4}$ then $f^{\prime}(1)=$?
(a) $\frac{3}{2}$
(b) 1
(c) $\frac{1}{4}$
(d) 2
(e) 4
3. Given that $y^{2}+2 y=2 x+1, \frac{d^{2} y}{d x^{2}}$ is
(a) $\frac{1}{y+T}$
(b) $\frac{y+1}{x^{2}}$
(c) $-\frac{1}{(y+1)^{3}}$
(d) $\frac{2 y}{(x+1)^{2}}$
(e) $\frac{x+2}{y^{3}}$
4. The point $(1,-1)$ lies on the Cissoid of Diocles, the curve whose equation is given by $y^{2}(2-x)=x^{3}$. What is the slope of the Cissoid at that point?
(a) 1
(b) -2
(c) 0
(d) 2
(e) -1
5. A leprechaun watching the return of the opening kickoff of a ND football game is standing 5 yds. from the west edge of the field and in line with the goal line. Clint Johnson received the kickoff and is running down the west edge (just in bounds) at $10.6 \mathrm{yd} / \mathrm{sec}$ for a TD. When he is 12 yds from the goal line, how fast, in $\mathrm{yd} / \mathrm{sec}$, is his distance from the leprechaun changing?
(a) 9.7
(b) 10.1
(c) 9.9
(d) 9.8
(e) 10.0
6. The global maximum and the global minimum for the function

$$
f(x)=\cos ^{2} x+\sin x
$$

on the interval $\left[0, \frac{3 \pi}{2}\right]$ are
(a) glmax $=1$, glmin $=0$
(b) glmax $=1$, glmin $=-1$
(c) glmax $=\frac{5}{4}$, glmin $=-1$
(d) $g l \max =\frac{3}{2}, g l \min =-\frac{1}{4}$
(e) glmax $=2$, glmin $=-\frac{1}{2}$
7. Suppose the $1^{\text {st }}$ derivative of $y=f(x)$ is

$$
\frac{d y}{d x}=(x-1)^{2}(x-2)(x-4)
$$

Which of the following is true?
(a) f has 3 local extrema. Local maxima at $x=1$ and $x=4$ and a local minimum at $x=2$
(b) f has 2 local extrema. A local minimum at $x=2$ and a local maximum at $x=4$.
(c) f has no local extrema.
(d) f has 3 local extrema. A local maximum at $x=1$ and local minima at $x=2$ and 4 .
(e) f has 2 local extrema. A local minimum at $x=4$ and a local maximum at $x=2$.
8. The function

$$
f(x)=x^{3}-3 x^{2}-9 x+4
$$

is increasing on the interval(s)
(a) $(-\infty,-1)$ and $(3, \infty)$
(b) $(-1, \infty)$
(c) $(-\infty, 3)$
(d) $(-1,3)$
(e) $(-\infty,-1)$ and $(0,3)$
9. The function

$$
f(x)=x^{3}-6 x^{2}+9 x-3
$$

is concave down on the interval(s)
(a) $(-\infty, 1)$ and $(3, \infty)$
(b) $(-\infty, 2)$
(c) $(2, \infty)$
(d) $(1,3)$
(e) never concave down
10. Given below is the graph of the position function $y=s(t)$ of a particle moving back and forth on a line. In which time intervals given below is the particle's velocity positive while its acceleration is negative?
(a) $(0,1),(3,5)$ and $(7,8)$
(b) $(2,4)$ and $(6,8)$
(c) $(3,4)$ and $(7,8)$
(d) $(1,3)$ and $(5,7)$
(e) $(2,3)$ and $(6,7)$
11. How many points of inflection does the function $f(x)=x^{6}-10 x^{4}+5 x-6$ have?
(a) 0
(b) 2
(c) 4
(d) 1
(e) 3

