1.
$$\lim_{X \oslash \infty} \frac{9x^4 + x - 3}{2x^4 + 5x^2 - x + 6} = ?$$

(A)
$$-\frac{1}{2}$$
 (B) $O(C) -\frac{3}{2}$ (D) $\frac{9}{2}$ (E) does not exist

2. The graph of
$$y = \frac{x^2 - x + 1}{x + 1}$$
 has asymptotes

(A)
$$y = 0$$
 and $x = -1$
(B) $y = x - 2$ and $x = -1$
(C) $y = x + 1$ and $x = -1$
(D) $y = x - 1$ and $x = -1$
(E) $y = x$ and $x = -1$

3. Given the function $y = \frac{x^2 - 4}{x^2 + 2}$, one finds by straight forward computation that

$$\frac{dy}{dx} = \frac{12x}{(x^2+2)^2} , \qquad \frac{d^2y}{dx^2} = \frac{12(2-3x^2)}{(x^2+2)^3}$$

Based on your analysis of the intercepts, asymptotes, local extreme points and inflection points, the curve below that is the graph of this function is:

(A) (B)

(C)

(D)

(E)

4. A rectangular box has a square base and no top. The combined area of the sides and bottom is 48 ft². The largest volume (in ft^3) that such a box can have is

(A) 12 (B) $12(2\sqrt{2}-1)$ (C) 24 (D) $16\sqrt{3}$ (E) 32

5. Use the tangent line approximation to find an approximate value of tan (0.26π)

(A) 1.06	(B) 1.08	(C) 1.05	(D) 1.10	(E) 1.07
				• •

6. It is guessed that $x_0 = 1$ is close to a root of the function $f(x) = x^3 - 4x^2 + 6x - 2$. The approximation to the root given by applying Newton's method twice is $x_2 =$

(A) 2 (B)
$$\frac{1}{3}$$
 (C) 0 (D) $\frac{4}{5}$ (E) $\frac{1}{4}$

7.
$$\int (8 \sin^2 x + 4 \cos x) dx = ?$$

(A) $4x + 2 \sin 2x + 4 \cos x + C$ (B) $16 \sin x \cos x - 4 \cos x + C$ (C) $4x - 2 \sin 2x + 4 \sin x + C$ (D) $\frac{8}{3} \sin^3 x + 4 \sin x + C$ (E) $4x - 2 \sin 2x + 2 \cos 2x + 4 \sin x + C$

- 8. The State of Illinois Cycle Rider Safety Program requires riders to be able to brake from 30 mph (44 ft/sec) to 0 in 45 ft. What constant deceleration (in ft/sec²) does it take to do that ?
 - (A) 21.7 (B) 21.2 (C) 22.1 (D) 21.3 (E) 21.5

9.
$$\int \frac{\sin(2t+1)}{\cos^2(2t+1)} dt = ?$$

(A)
$$2 \tan (2t + 1) + C$$

(B) $\frac{1}{4} \csc (2t + 1) + C$
(C) $-\sec (2t + 1) \tan (2t + 1) + C$
(D) $\frac{1}{2} \sec (2t + 1) + C$
(E) $\cot (2t + 1) \csc (2t + 1) + C$

- 10. Let $f(x) = 21 x^3$, let $P = \{1, \frac{3}{2}, \frac{5}{2}, 4\}$ be a partition of the interval [1,4] and let $c_1 = 1, c_2 = 2, c_3 = 3$ be numbers chosen in the three subintervals of P. The value of the resulting Riemann sum for f on the interval [1,4] is
 - (A) 14 (B) $\frac{29}{2}$ (C) 12 (D) $\frac{27}{2}$ (E) 16