1. $\lim _{x \not \varnothing_{\infty}} \frac{9 x^{4}+x-3}{2 x^{4}+5 x^{2}-x+6}=$?
(A) $-\frac{1}{2}$
(B) 0 (C) $-\frac{3}{2}$
(D) $\frac{9}{2}$
(E) does not exist
2. The graph of $y=\frac{x^{2}-x+1}{x+1}$ has asymptotes
(A) $y=0$ and $x=-1$
(B) $y=x-2$ and $x=-1$
(C) $y=x+1$ and $x=-1$
(D) $y=x-1$ and $x=-1$
(E) $y=x$ and $x=-1$
3. Given the function $y=\frac{x^{2}-4}{x^{2}+2}$, one finds by straight forward computation that

$$
\frac{d y}{d x}=\frac{12 x}{\left(x^{2}+2\right)^{2}}, \quad \frac{d^{2} y}{d x^{2}}=\frac{12\left(2-3 x^{2}\right)}{\left(x^{2}+2\right)^{3}}
$$

Based on your analysis of the intercepts, asymptotes, local extreme points and inflection points, the curve below that is the graph of this function is:
(A)
(B)
(C)
(D)
(E)
4. A rectangular box has a square base and no top. The combined area of the sides and bottom is $48 \mathrm{ft}^{2}$. The largest volume (in ft^{3}) that such a box can have is
(A) 12
(B) $12(2 \sqrt{2}-1)$
(C) 24
(D) $16 \sqrt{3}$
(E) 32
5. Use the tangent line approximation to find an approximate value of $\tan (0.26 \pi)$
(A) 1.06
(B) 1.08
(C) 1.05
(D) 1.10
(E) 1.07
6. It is guessed that $x_{0}=1$ is close to a root of the function $f(x)=x^{3}-4 x^{2}+6 x-2$. The approximation to the root given by applying Newton's method twice is $\mathrm{x}_{2}=$
(A) 2
(B) $\frac{1}{3}$
(C) 0
(D) $\frac{4}{5}$
(E) $\frac{1}{4}$
7. $\int\left(8 \sin ^{2} x+4 \cos x\right) d x=$?
(A) $4 x+2 \sin 2 x+4 \cos x+C$
(B) $16 \sin x \cos x-4 \cos x+C$
(C) $4 x-2 \sin 2 x+4 \sin x+C$
(D) $\frac{8}{3} \sin ^{3} x+4 \sin x+C$
(E) $4 \mathrm{x}-2 \sin 2 \mathrm{x}+2 \cos 2 \mathrm{x}+4 \sin \mathrm{x}+\mathrm{C}$
8. The State of Illinois Cycle Rider Safety Program requires riders to be able to brake from $30 \mathrm{mph}(44 \mathrm{ft} / \mathrm{sec}$) to 0 in 45 ft . What constant deceleration (in $\mathrm{ft} / \mathrm{sec}^{2}$) does it take to do that?
(A) 21.7
(B) 21.2
(C) 22.1
(D) 21.3
(E) 21.5
9. $\int \frac{\sin (2 t+1)}{\cos ^{2}(2 t+1)} d t=$?
(A) $2 \tan (2 t+1)+C$
(B) $\frac{1}{4} \csc (2 t+1)+C$
(C) $-\sec (2 t+1) \tan (2 t+1)+C$
(D) $\frac{1}{2} \sec (2 t+1)+C$
(E) $\cot (2 t+1) \csc (2 t+1)+C$
10. Let $f(x)=21-x^{3}$, let $P=\left\{1, \frac{3}{2}, \frac{5}{2}, 4\right\}$ be a partition of the interval $[1,4]$ and let $c_{1}=1, c_{2}=2, c_{3}=3$ be numbers chosen in the three subintervals of P. The value of the resulting Riemann sum for f on the interval $[1,4]$ is
(A) 14
(B) $\frac{29}{2}$
(C) 12
(D) $\frac{27}{2}$
(E) 16

