1. The average value of an integrable function f on the interval $[a, b]$ is defined as

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Using this definition, compute the average value of

$$
f(x)=\frac{\sec ^{2} x}{(1+7 \tan x)^{2 / 3}}
$$

on the interval $\left[0, \frac{\pi}{4}\right]$.
(A) $\frac{17}{10 \pi}$
(B) $\frac{5}{3 \pi}$
(C) $\frac{13}{8 \pi}$
(D) $\frac{7}{4 \pi}$
(E) $\frac{12}{7 \pi}$
2. Suppose that f has a negative derivative for all values of x and that $f(1)=0$. How many of the following statements must be true of the function

$$
h(x)=\int_{0}^{x} f(t) d t ?
$$

i) $\quad h$ is a twice-differentiable function of x.
ii) The graph of h has a horizontal tangent at $x=1$.
iii) h has a local maximum at $x=1$.
iv) The graph of h has an inflection point at $x=1$.
(A) 4
(B) 3
(C) 2
(D) 1
(E) 0
3. Some values of a function f are given in the table below

x	0	3	6	9	12
$f(x)$	5	9	7	11	10

By Simpson's Rule, $\int_{0}^{12} f(x) d x$ is approximately
(A) 104
(B) 109
(C) 98
(D) 126
(E) 112
4. Find the area of the region between the graphs of $y=x^{2}-x-4$ and $y=x-1$.
(A) 10
(B) $\frac{41}{4}$
(C) $\frac{32}{3}$
(D) $\frac{65}{6}$
(E) 11
5. Find the area of the "triangular" region bounded on the left by $y=\sqrt{x}$, on the right by $y=6-x$ and below by $y=1$.
(A) $\frac{7}{3}$
(B) $\frac{5}{2}$
(C) $\frac{9}{4}$
(D) $\frac{17}{8}$
(E) $\frac{13}{6}$
6. A solid lies between planes perpendicular to the x-axis at $x=\frac{\pi}{4}$ and $x=\frac{5}{4} \pi$. The cross sections between these planes are circular discs whose diameters run from the curve $y=2 \cos x$ to the curve $y=2 \sin x$. The volume of this solid is
(A) $2 \pi^{3 / 2}$
(B) $2 \sqrt{2} \pi$
(C) 4π
(D) π^{2}
(E) $2 \sqrt{3} \pi$
7. Let R be the region bounded by the semi-circle $y=\sqrt{25-x^{2}}$ and the line $y=4$. Find the volume of the solid obtained by revolving R about the x-axis.
(A) 36π
(B) 25π
(C) 30π
(D) 32π
(E) 24π
8. The volume of the solid generated by revolving the region bounded by the parabola $y=x^{2}$ and the line $y=1$ about the line $y=2$ is
(A) $\int_{-1}^{1} \pi\left(1-x^{2}\right)^{2} d x$
(B) $\int_{-1}^{1} \pi\left[\left(2-x^{2}\right)^{2}-1\right] d x$
(C) $\int_{0}^{1} 2 \pi(2-y)(1-y) d y$
(D) $\int_{-1}^{1} \pi\left[2^{2}-\left(2-x^{2}\right)^{2}\right] d x$
(E) $\int_{0}^{1} 2 \pi y(2-y) d y$
9. The volume of the solid generated by revolving the region bounded by the parabolas $x=3 y^{2}-2$ and $x=y^{2}$ about the x-axis is
(A) 2π
(B) $\frac{2}{3} \pi$
(C) $\frac{4}{3} \pi$
(D) π
(E) $\frac{5}{2} \pi$
10. The length of the curve $y=\left(x^{2}-\frac{2}{3}\right)^{3 / 2}$ from $x=1$ to $x=2$ is
(A) 6
(B) $4 \sqrt{2}$
(C) $\frac{27}{4}$
(D) $3^{3 / 2}$
(E) $\frac{16}{3}$

