1. Which of the following statements about the function y = f(x) graphed here are true, and which are false?

Which one of the following is true?

(A) Neither $\lim_{x \oslash 1} f(x)$ nor $\lim_{x \oslash 2} f(x)$ exists (B) $\lim_{x \oslash H} f(x) = 1$ and $\lim_{x \oslash 2} f(x) = 2$

(C)
$$\lim_{x \not \propto 1^-} f(x)$$
 does not exist but $\lim_{x \not \propto 0} f(x)$ does

(D) Both
$$\lim_{x \not \oslash 1^-} f(x)$$
 and $\lim_{x \not\oslash 2} f(x)$ exist

(E)
$$\lim_{x \boxtimes 0^{-}} f(x) \neq \lim_{x \boxtimes 0^{+}} f(x)$$

2.
$$\lim_{y \neq 0} \frac{5y^3 + 8y^2}{3y^4 - 16y^2} = ?$$

(A) $\frac{5}{3}$ (B) $\frac{8}{3}$ (C) $-\frac{1}{2}$ (D) $-\frac{5}{16}$ (E) 0

3.
$$\lim_{x \neq 0} 6x^2 (\cot x) (\csc 2x) = ?$$

(A) 3(B) $\frac{1}{4}$ (C) 0 (D) 12 (E) doesn't exist

4. If, for $x \ge 0$, $3x^2 - 5x - 1 \le (x^2 - 7x + 1) f(x) \le 3x^2 - x + 4$, Then $\lim_{X \oslash \infty} f(x) = ?$ (A) 2 (B) ∞ (C) -5 (D) 0 (E) 3

5. For $x \neq 2$, $f(x) = \frac{x^2 + 6x - 16}{x - 2}$. If f is also defined and continuous at x = 2, then f(2) = ?

(A) 1 (B) 10 (C) $-\frac{1}{2}$ (D) 8 (E) -3

6. At how many points on the graph of $y = x - \frac{1}{x}$ is the tangent line parallel to the line 2x - y = 5?

(A) 0 (B) 4 (C) 2 (D) 3 (E) 1

7. If
$$f(x) = 2x\sqrt{1+3x}$$
, then $f'(1) = ?$

(A) 5 (B) $\frac{19}{3}$ (C) $2\sqrt{3}$ (D) $\frac{11}{2}$ (E) 8

8. The slope of the curve
$$x^2 + \frac{x}{y} = 6$$
 at the point (3, -1) is

(A)
$$3(B) \frac{16}{5}$$
 (C) $\frac{7}{9}$ (D) $-\frac{4}{15}$ (E) $\frac{5}{3}$

9. If
$$f(x) = [x^3 + (2x - 1)^3]^3$$
, then $f'(1) = ?$
(A) 108 (B) 72 (C) 54 (D) 96 (E) 48

10. If
$$f(x) = \frac{\tan x - 1}{\sec x}$$
, then $f'(\frac{\pi}{4}) = ?$
(A) 0 (B) $\sqrt{2}$ (C) $\frac{1}{2}$ (D) $\sqrt{3}$ (E) 1

- 11. If $y = (x^4 3x^2 + 1)^{10}$, use the differential of y to approximate the change in y when x changes from 1 to 1.01.
 - (A) 0.4 (B) 0.1 (C) 0.3 (D) 0.2 (E) 0.5

12. The local extreme values of the function $y = \frac{x^5}{(x-2)^3}$ are given by (A) a local maximum at x = 3 only (B) a local minimum at x = 5 and a local maximum at x = 0(C) a local minimum at x = 5 only (D) a local maximum at x = 5 only (E) a local maximum at x = 5 and a local minimum at x = 013. The graph of $y = \frac{9x^2 + 3x - 2}{3x^2 + 2x - 1}$ has asymptotes

(A)
$$x = -1$$
, $x = \frac{1}{3}$ and $y = 3$

(B)
$$x = -1$$
 and $y = 0$
(C) $x = \frac{1}{3}$ and $y = 3$
(D) $x = -1$ and $x = \frac{1}{3}$
(E) $x = -1$ and $y = 3$

14. A projectile fired upward from the surface of the moon is to reach a maximum height of 1000 ft. What must its initial velocity (in ft/sec) be? The acceleration due to lunar gravity is 5ft/sec².

(A) 100 (B) 80 (C) 150 (D) 110 (E) 120

15. A rubbish heap in the shape of a cube is being compacted. If the volume decreases at the rate of 2 cubic meters per minute, the rate of change of surface area of the cube when the volume is 27 cubic meters, in square meters per minute, is

(A) -2 (B) $-\frac{5}{3}$ (C) -3 (D) $-\frac{8}{3}$ (E) $-\frac{10}{3}$

16. A house at A is in the woods 12 miles north of an east-west road, the nearest point of which is B. At C, 5 miles east of B on the road, is an electric power substation. If the power line is built to join C to A, it costs 3 times as much per mile through the woods as along the highway. The line will either go

straight from C to A or along the road from C to a point P part way toward B and then through the woods to A. The cheapest plan is to go

- (A) $\sqrt{2}$ miles west to P
- (B) straight to A
- (C) 5 $3\sqrt{2}$ miles west to P
- (D) 3 miles west to P
- (E) $4 \sqrt{3}$ miles west to P

- 17. The graph of $y = 2x^6 5x^4 + x + 1$
 - (A) has only one point of inflection
 - (B) is concave downwards on (-1, 1)
 - (C) is concave upwards on (-1, 0) and $(1, \infty)$
 - (D) has three points of inflection
 - (E) is concave downwards on $(-\infty, -1)$ and $(1, \infty)$

18. If
$$\frac{dy}{dx} = \frac{4x}{(x^2 - 3)^2}$$
 and $y(1) = 3$

then y(2) = ?

(A) 1 (B)
$$\frac{2}{3}$$
 (C) -1 (D) $\frac{5}{2}$ (E) 0

19. Consider the function
$$g(x) = \cos x$$
, $\frac{\pi}{6} \le x \le \frac{\pi}{2}$.
Let P =
 $\left\{ \frac{\pi}{6} = x_0, x_1, x_2, \dots, x_n = \frac{\pi}{2} \right\}$
be a typical partition of $\left[\frac{\pi}{6}, \frac{\pi}{2} \right]$ and let $x_{k-1} \le c_k \le x_k$ for $k = 1, \dots, n$. Then

$$\lim_{\|\mathbf{P}\| \ge 0} \left(\sum_{k=1}^{n} g(c_k) \Delta x_k \right) =$$
(A) $\frac{\pi}{3}$ (B) $\frac{1}{2}$ (C) $\frac{1}{\sqrt{2}}$ (D) 1(E) $\frac{\sqrt{3}}{3}$

20. The area between the region bounded by the graphs of $y = x^2$ and y = x

(A)
$$\frac{1}{6}$$
 (B) $\frac{5}{24}$ (C) $\frac{1}{12}$ (D) $\frac{1}{4}$ (E) $\frac{7}{36}$

21. The volume of the solid generated by revolving about the x-axis the region in the 1st quadrant bounded by the graphs of y = x, $y = \frac{1}{x}$, x = 1 and x = 2 is

(A)
$$2\pi$$
 (B) $\frac{7}{4}\pi$ (C) $\frac{11}{6}\pi$ (D) $\frac{5}{3}\pi$ (E) $\frac{13}{6}\pi$

A solid of revolution is formed by rotating the region under the graph of the function y = f(x) $1 \le x \le 4$, about the y-axis. The values of f(1), f(2), f(3), f(4) are as shown. Application of the trapezoidal rule to a certain integral shows that the volume of the solid is approximately

- (A) 35π (B) 28π (C) 32π (D) 34π (E) 30π
- 23. The curve $y = x^2$, $0 \le x \le 3$ is revolved about the x-axis. The area of the surface generated in this way is given by

(A)
$$\int_{0}^{3} 2\pi x^{2} \sqrt{1 + 4x^{2}} dx$$

(B) $\int_{0}^{3} 2\pi x \sqrt{1 + 4x^{2}} dx$
(C) $\int_{0}^{3} 2\pi x^{2} \sqrt{1 + x^{4}} dx$
(D) $\int_{0}^{3} 2\pi x^{2} \sqrt{1 + 2x} dx$
(E) $\int_{0}^{3} 2\pi x \sqrt{1 + 2x} dx$

- 24. The y-coordinate of the center of mass of a thin plate of constant (uniform) density covering the region shown in the diagram is
 - (A) $\frac{1}{3}$
 - (B) π/8
 - (C) 2√3
 - (D) $\frac{\pi}{6}$
 - (E) $\frac{9}{4}\sqrt{2}$

- 25. A swimming pool has the shape of a right cirvular cylinder with radius 10 ft. and depth 8 ft. If the pool contains water (weighing 62.5 lb/ft³) to a depth of 5 ft. find the work (in ft-lbs) required to pump all but 1 ft. of water to the top of the pool
 - (A) 171875 π
 - (B) 10000 π
 - (C) 156250 π
 - (D) 187500 π
 - (E) 125000 π