1. Which of the following statements about the function \(y = f(x) \) graphed here are true, and which are false?

 Which one of the following is true?

 (A) Neither \(\lim_{x \to 1} f(x) \) nor \(\lim_{x \to 2} f(x) \) exists
 (B) \(\lim_{x \to 1} f(x) = 1 \) and \(\lim_{x \to 2} f(x) = 2 \)
 (C) \(\lim_{x \to 1^-} f(x) \) does not exist but \(\lim_{x \to 0} f(x) \) does
 (D) Both \(\lim_{x \to 1^-} f(x) \) and \(\lim_{x \to 2} f(x) \) exist
 (E) \(\lim_{x \to 0^-} f(x) \neq \lim_{x \to 0^+} f(x) \)

2. \(\lim_{y \to 0} \frac{5y^3 + 8y^2}{3y^4 - 16y^2} = ? \)

 (A) \(\frac{5}{3} \)
 (B) \(\frac{8}{3} \)
 (C) \(-\frac{1}{2} \)
 (D) \(-\frac{5}{16} \)
 (E) 0

3. \(\lim_{x \to 0} 6x^2 \cot x \csc 2x = ? \)
4. If, for \(x \geq 0, \)

\[
3x^2 - 5x - 1 \leq (x^2 - 7x + 1) f(x) \leq 3x^2 - x + 4,
\]

Then \(\lim_{x \to \infty} f(x) = ? \)

(A) 2 (B) \(\infty \) (C) -5 (D) 0 (E) 3

5. For \(x \neq 2, f(x) = \frac{x^2 + 6x - 16}{x - 2} \). If \(f \) is also defined and continuous at \(x = 2, \)
then \(f(2) = ? \)

(A) 1 (B) 10 (C) \(-\frac{1}{2}\) (D) 8 (E) -3

6. At how many points on the graph of \(y = x - \frac{1}{x} \) is the tangent line parallel to the line \(2x - y = 5? \)
7. If \(f(x) = 2x\sqrt{1 + 3x} \), then \(f'(1) = ? \)

(A) 5 (B) \(\frac{19}{3} \) (C) \(2\sqrt{3} \) (D) \(\frac{11}{2} \) (E) 8

8. The slope of the curve \(x^2 + \frac{x}{y} = 6 \) at the point \((3, -1) \) is

(A) 3 (B) \(\frac{16}{5} \) (C) \(\frac{7}{9} \) (D) \(-\frac{4}{15} \) (E) \(\frac{5}{3} \)

9. If \(f(x) = \left[x^3 + (2x - 1)^3 \right]^3 \), then \(f'(1) = ? \)

(A) 108 (B) 72 (C) 54 (D) 96 (E) 48
10. If \(f(x) = \frac{\tan x - 1}{\sec x} \), then \(f'(\frac{\pi}{4}) = ? \)

(A) 0
(B) \(\sqrt{2} \)
(C) \(\frac{1}{2} \)
(D) \(\sqrt{3} \)
(E) 1

11. If \(y = (x^4 - 3x^2 + 1)^{10} \), use the differential of \(y \) to approximate the change in \(y \) when \(x \) changes from 1 to 1.01.

(A) 0.4
(B) 0.1
(C) 0.3
(D) 0.2
(E) 0.5

12. The local extreme values of the function \(y = \frac{x^5}{(x - 2)^3} \) are given by

(A) a local maximum at \(x = 3 \) only
(B) a local minimum at \(x = 5 \) and a local maximum at \(x = 0 \)
(C) a local minimum at \(x = 5 \) only
(D) a local maximum at \(x = 0 \) only
(E) a local maximum at \(x = 5 \) and a local minimum at \(x = 0 \)

13. The graph of \(y = \frac{9x^2 + 3x - 2}{3x^2 + 2x - 1} \) has asymptotes

(A) \(x = -1, \ x = \frac{1}{3} \) and \(y = 3 \)
14. A projectile fired upward from the surface of the moon is to reach a maximum height of 1000 ft. What must its initial velocity (in ft/sec) be? The acceleration due to lunar gravity is 5 ft/sec².

(A) 100 (B) 80 (C) 150 (D) 110 (E) 120

15. A rubbish heap in the shape of a cube is being compacted. If the volume decreases at the rate of 2 cubic meters per minute, the rate of change of surface area of the cube when the volume is 27 cubic meters, in square meters per minute, is

(A) −2 (B) −\frac{5}{3} (C) −3 (D) −\frac{8}{3} (E) −\frac{10}{3}

16. A house at A is in the woods 12 miles north of an east-west road, the nearest point of which is B. At C, 5 miles east of B on the road, is an electric power substation. If the power line is built to join C to A, it costs 3 times as much per mile through the woods as along the highway. The line will either go
straight from C to A or along the road from C to a point P part way toward B and then through the woods to A. The cheapest plan is to go

(A) $\sqrt{2}$ miles west to P
(B) straight to A
(C) $5 - 3\sqrt{2}$ miles west to P
(D) 3 miles west to P
(E) $4 - \sqrt{3}$ miles west to P

17. The graph of $y = 2x^6 - 5x^4 + x + 1$

(A) has only one point of inflection
(B) is concave downwards on $(-1, 1)$
(C) is concave upwards on $(-1, 0)$ and $(1, \infty)$
(D) has three points of inflection
(E) is concave downwards on $(-\infty, -1)$ and $(1, \infty)$

18. If \(\frac{dy}{dx} = \frac{4x}{(x^2 - 3)^2} \) and \(y(1) = 3 \)

then \(y(2) = ? \)
19. Consider the function \(g(x) = \cos x, \quad \frac{\pi}{6} \leq x \leq \frac{\pi}{2} \).

Let \(P = \left\{ \frac{\pi}{6} = x_0, x_1, x_2, \ldots, x_n = \frac{\pi}{2} \right\} \) be a typical partition of \(\left[\frac{\pi}{6}, \frac{\pi}{2} \right] \) and let \(x_{k-1} \leq c_k \leq x_k \) for \(k = 1, \ldots, n \). Then

\[
\lim_{|P| \to 0} \left(\sum_{k=1}^{n} g(c_k) \Delta x_k \right) =
\]

(A) \(\frac{\pi}{3} \) \hspace{1cm} (B) \(\frac{1}{2} \) \hspace{1cm} (C) \(\frac{1}{\sqrt{2}} \) \hspace{1cm} (D) 1 \hspace{1cm} (E) \(\frac{\sqrt{3}}{3} \)

20. The area between the region bounded by the graphs of \(y = x^2 \) and \(y = x \)
is

\[
\begin{align*}
(A) \quad & \frac{1}{6} \\
&B \quad \frac{5}{24} \\
(C) \quad & \frac{1}{12} \\
(D) \quad & \frac{1}{4} \\
&E \quad \frac{11}{6} \\
\end{align*}
\]

21. The volume of the solid generated by revolving about the x–axis the region in the 1st quadrant bounded by the graphs of \(y = x \), \(y = \frac{1}{x} \), \(x = 1 \) and \(x = 2 \) is

\[
\begin{align*}
(A) \quad & 2\pi \\
(B) \quad & \frac{7}{4} \pi \\
(C) \quad & \frac{11}{6} \pi \\
(D) \quad & \frac{5}{3} \pi \\
(E) \quad & \frac{13}{6} \pi \\
\end{align*}
\]
22. A solid of revolution is formed by rotating the region under the graph of the function $y = f(x)$, $1 \leq x \leq 4$, about the y-axis. The values of $f(1)$, $f(2)$, $f(3)$, $f(4)$ are as shown. Application of the trapezoidal rule to a certain integral shows that the volume of the solid is approximately

(A) 35π (B) 28π (C) 32π (D) 34π (E) 30π

23. The curve $y = x^2$, $0 \leq x \leq 3$ is revolved about the x-axis. The area of the surface generated in this way is given by

(A) $\int_{0}^{3} 2\pi x^2 \sqrt{1 + 4x^2} \, dx$

(B) $\int_{0}^{3} 2\pi x \sqrt{1 + 4x^2} \, dx$

(C) $\int_{0}^{3} 2\pi x^2 \sqrt{1 + x^4} \, dx$

(D) $\int_{0}^{3} 2\pi x^2 \sqrt{1 + 2x} \, dx$

(E) $\int_{0}^{3} 2\pi x \sqrt{1 + 2x} \, dx$
24. The y-coordinate of the center of mass of a thin plate of constant (uniform) density covering the region shown in the diagram is

(A) \(\frac{1}{3} \)
(B) \(\frac{\pi}{8} \)
(C) \(2\sqrt{3} \)
(D) \(\frac{\pi}{6} \)
(E) \(\frac{9}{4}\sqrt{2} \)

25. A swimming pool has the shape of a right circular cylinder with radius 10 ft. and depth 8 ft. If the pool contains water (weighing 62.5 lb/ft\(^3\)) to a depth of 5 ft. find the work (in ft-lbs) required to pump all but 1 ft. of water to the top of the pool

(A) \(171875 \pi \)
(B) \(10000 \pi \)
(C) \(156250 \pi \)
(D) \(187500 \pi \)
(E) \(125000 \pi \)