1. Which of the following statements about the function $y=f(x)$ graphed here are true, and which are false?

Which one of the following is true?
(A) Neither $\lim _{x \not ⿴ 1} f(x)$ nor $\lim _{x \not ⿴ 2} f(x)$ exists
(B) $\lim _{x \not \subset H} f(x)=1$ and $\lim _{x \varnothing 2} f(x)=2$
(C) $\lim _{x \varnothing 1^{-}} f(x)$ does not exist but $\lim _{x \not 00} f(x)$ does
(D) Both $\lim _{x \not 1^{-}} f(x)$ and $\lim _{x \nsim 2} f(x)$ exist
(E) $\lim _{x \not 0^{-}} f(x) \neq \lim _{x \not 0^{+}} f(x)$
2. $\lim _{y \varnothing 0} \frac{5 y^{3}+8 y^{2}}{3 y^{4}-16 y^{2}}=$?
(A) $\frac{5}{3}$
(B) $\frac{8}{3}$
(C) $-\frac{1}{2}$
(D) $-\frac{5}{16}$
(E) 0
3. $\lim _{x \not \subset 0} 6 x^{2}(\cot x)(\csc 2 x)=$?
(A) 3 (B) $\frac{1}{4}$
(C) 0
(D) 12
(E) doesn't exist
4. If, for $x \geq 0$,

$$
3 x^{2}-5 x-1 \leqq\left(x^{2}-7 x+1\right) f(x) \leq 3 x^{2}-x+4,
$$

Then $\lim _{x \not \varnothing_{\infty}} f(x)=$?
(A) 2
(B) ∞
(C) -5
(D) 0
(E) 3
5. For $x \neq 2, f(x)=\frac{x^{2}+6 x-16}{x-2}$. If f is also defined and continuous at $x=2$, then $f(2)=$?
(A) 1
(B) 10
(C) $-\frac{1}{2}$
(D) 8
(E) -3
6. At how many points on the graph of $y=x-\frac{1}{x}$ is the tangent line parallel to the line $2 x-y=5$?
(A) 0
(B) 4
(C) 2
(D) 3
(E) 1
7. If $f(x)=2 x \sqrt{1+3 x}$, then $f^{\prime}(1)=$?
(A) 5
(B) $\frac{19}{3}$
(C) $2 \sqrt{3}$
(D) $\frac{11}{2}$
(E) 8
8. The slope of the curve $x^{2}+\frac{x}{y}=6$ at the point $(3,-1)$ is
(A) 3 (B) $\frac{16}{5}$
(C) $\frac{7}{9}$
(D) $-\frac{4}{15}$
(E) $\frac{5}{3}$
9. If $f(x)=\left[x^{3}+(2 x-1)^{3}\right]^{3}$, then $f^{\prime}(1)=$?
(A) 108
(B) 72
(C) 54
(D) 96
(E) 48
10. If $f(x)=\frac{\tan x-1}{\sec x}$, then $f^{\prime}\left(\frac{\pi}{4}\right)=$?
(A) 0
(B) $\sqrt{2}$
(C) $\frac{1}{2}$
(D) $\sqrt{3}$
(E) 1
11. If $y=\left(x^{4}-3 x^{2}+1\right)^{10}$, use the differential of y to approximate the change in y when x changes from 1 to 1.01.
(A) 0.4
(B) 0.1
(C) 0.3
(D) 0.2
(E) 0.5
12. The local extreme values of the function $\quad y=\frac{x^{5}}{(x-2)^{3}} \quad$ are given by
(A) a local maximum at $x=3$ only
(B) a local minimum at $x=5$ and a local maximum at $x=0$
(C) a local minimum at $x=5$ only
(D) a local maximum at $x=0$ only
(E) a local maximum at $x=5$ and a local minimum at $x=0$
13. The graph of $y=\frac{9 x^{2}+3 x-2}{3 x^{2}+2 x-1} \quad$ has asymptotes
(A) $x=-1, x=\frac{1}{3}$ and $y=3$
(B) $x=-1$ and $y=0$
(C) $x=\frac{1}{3}$ and $y=3$
(D) $x=-1$ and $x=\frac{1}{3}$
(E) $x=-1$ and $y=3$
14. A projectile fired upward from the surface of the moon is to reach a maximum height of 1000 ft . What must its initial velocity (in $\mathrm{ft} / \mathrm{sec}$) be? The acceleration due to lunar gravity is $5 \mathrm{ft} / \mathrm{sec}^{2}$.
(A) 100
(B) 80
(C) 150
(D) 110
(E) 120
15. A rubbish heap in the shape of a cube is being compacted. If the volume decreases at the rate of 2 cubic meters per minute, the rate of change of surface area of the cube when the volume is 27 cubic meters, in square meters per minute, is
(A) -2
(B) $-\frac{5}{3}$
(C) -3
(D) $-\frac{8}{3}$
(E) $-\frac{10}{3}$
16. A house at A is in the woods 12 miles north of an east-west road, the nearest point of which is B. At $C, 5$ miles east of B on the road, is an electric power substation. If the power line is built to join C to A, it costs 3 times as much per mile through the woods as along the highway. The line will either go
straight from C to A or along the road from C to a point P part way toward B and then through the woods to A. The cheapest plan is to go
(A) $\sqrt{2}$ miles west to P
(B) straight to A
(C) $5-3 \sqrt{2}$ miles west to P
(D) 3 miles west to P
(E) $4-\sqrt{3}$ miles west to P
17. The graph of $y=2 x^{6}-5 x^{4}+x+1$
(A) has only one point of inflection
(B) is concave downwards on $(-1,1)$
(C) is concave upwards on $(-1,0)$ and $(1, \infty)$
(D) has three points of inflection
(E) is concave downwards on $(-\infty,-1)$ and $(1, \infty)$
18. If $\frac{d y}{d x}=\frac{4 x}{\left(x^{2}-3\right)^{2}}$ and $y(1)=3$
then $y(2)=$?
(A) 1
(B) $\frac{2}{3}$
(C) -1
(D) $\frac{5}{2}$
(E) 0
19. Consider the function $g(x)=\cos x, \frac{\pi}{6} \leqq x \leq \frac{\pi}{2}$.

Let $P=$
$\left\{\frac{\pi}{6}=x_{0}, x_{1}, x_{2}, \ldots, x_{n}=\frac{\pi}{2}\right\}$ be a typical partition of $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$ and let $x_{k-1} \leq c_{k} \leq x_{k}$ for $k=1, \ldots$, n. Then

$$
\lim _{\mathbb{P} \mid \varnothing 0}\left(\sum_{k=1}^{n} g\left(c_{k}\right) \Delta x_{k}\right)=
$$

(A) $\frac{\pi}{3}$
(B) $\frac{1}{2}$
(C) $\frac{1}{\sqrt{2}}$
(D) 1 (E) $\frac{\sqrt{3}}{3}$
20. The area between the region bounded by the graphs of

$$
y=x^{2} \text { and } y=x
$$

(A) $\frac{1}{6}$
(B) $\frac{5}{24}$
(C) $\frac{1}{12}$
(D) $\frac{1}{4}$
(E)

7
36
21. The volume of the solid generated by revolving about the x-axis the region in the $1^{\text {st }}$ quadrant bounded by the graphs of $y=x, y=\frac{1}{x}, x=1$ and $x=2$ is
(A) 2π
(B) $\frac{7}{4} \pi$
(C) $\frac{11}{6} \pi$
(D) $\frac{5}{3} \pi$
(E) $\frac{13}{6}$
π
22.

A solid of revolution is formed by rotating the region under the graph of the function $y=f(x) 1 \leq x \leq 4$, about the y-axis. The values of $f(1), f(2), f(3)$, $f(4)$ are as shown. Application of the trapezoidal rule to a certain integral shows that the volume of the solid is approximately
(A) 35π
(B) 28π
(C) 32π
(D) 34π
(E) 30π
23. The curve $y=x^{2}, 0 \leq x \leq 3$ is revolved about the x-axis. The area of the surface generated in this way is given by
(A) $\int_{0}^{3} 2 \pi x^{2} \sqrt{1+4 x^{2}} d x$
(B) $\int_{0}^{3} 2 \pi x \sqrt{1+4 x^{2}} d x$
(C) $\int_{0}^{3} 2 \pi x^{2} \sqrt{1+x^{4}} d x$
(D) $\int_{0}^{3} 2 \pi x^{2} \sqrt{1+2 x} d x$
(E) $\int_{0}^{3} 2 \pi x \sqrt{1+2 x} d x$
24. The y-coordinate of the center of mass of a thin plate of constant (uniform) density covering the region shown in the diagram is
(A) $\frac{1}{3}$
(B) $\frac{\pi}{8}$
(C) $2 \sqrt{3}$
(D) $\frac{\pi}{6}$
(E) $\frac{9}{4} \sqrt{2}$
25. A swimming pool has the shape of a right cirvular cylinder with radius 10 ft . and depth 8 ft . If the pool contains water (weighing $62.5 \mathrm{lb} / \mathrm{ft}^{3}$) to a depth of 5 ft . find the work (in ft-lbs) required to pump all but 1 ft . of water to the top of the pool
(A) 171875π
(B) 10000π
(C) 156250π
(D) 187500π
(E) 125000π

