How many of the following statements about the function y = f(x) pictured above, are true?

(i)	lim x∅1	f(x) exists			
(ii)	lim x∅2	f(x) exists			
(iii)	lim x∅3+	f(x) does	not exis	t	
(iv)	lim xØ3⁻	f(x) does	not exis	t	
(A)	0	(B) 1	(C) 2	(D) 3	(E) 4

2.
$$\lim_{X \ge 1} \frac{x - \sqrt{3x - 2}}{x^2 - 1} = ?$$

(A) $\frac{1}{3}$ (B) $-\frac{1}{4}$ (C) $\frac{\sqrt{2}}{3}$ (D) $-\frac{1}{2}$ (E) $-\frac{3}{2}$

3.
$$\lim_{t \neq 0^{-}} \frac{t}{\in t} = ?$$

(A) $-\infty$ (B) 1 (C) ∞ (D) $0(E) - 1$

4.
$$\lim_{h \oslash 0} \frac{\left(-\frac{1}{2} + h\right)^4 + \left(-\frac{1}{2}\right)^4}{h} = ?$$

(A) 2 (B) $-\frac{1}{2}$ (C) $\frac{1}{4}$ (D) $-\frac{3}{4}$ (E) $\frac{1}{8}$

$$f(x) = \frac{x-2}{(x+3)(x-1)^2}$$
 for x near 1?

(A) (B)

(C)

(D)

(E)

6. Define $g\left(\frac{1}{2}\right)$ in a way that extends

$$g(x) = \frac{2x - 1}{8x^2 - 4x}$$

to be continuous at $x = \frac{1}{2}$.
(A) 2 (B) $-\frac{1}{4}$ (C) 0 (D) -1 (E) $\frac{1}{2}$

- 7. Let $f(x) = x^3 x^2 + x + 3$. Which one of the following values must the function f take on at some point on the interval [0, 1]?
- (A) -1 (B) $\sqrt{2}$ (C) $\frac{5}{2}$ (D) π (E) 7

8. The equation of the tangent line to the curve

 $y = 4 \cos x - 2 \sin x$

at the point
$$\left(\frac{\pi}{2}, -2\right)$$
 is

(A)
$$y = -4x + 2\pi - 2$$
 (B) $y = 2x - 2\pi$
(C) $y = x - \frac{3}{2}\pi$ (D) $y = -4x + \pi + 1$
(E) $y = -2x$

9.
$$y = f(x)$$
 $y = g(x)$ $y = h(x)$

From the graphs, which one of the following statements appears to be true?

- (A) f(x) is the derivative of h(x)
- (B) g(x) is the derivative of f(x)
- (C) g(x) is the derivative of h(x)
- (D) h(x) is the derivative of f(x)
- (E) h(x) is the derivative of g(x)

10. If
$$y = \frac{\tan x}{1 + \tan x}$$
, then the slope of the curve at the point $(\frac{\pi}{4}, \frac{1}{2})$ is

(A)
$$\frac{\pi}{4}$$
 (B) 1 (C) $\frac{1}{2}$ (D) 0 (E) 2

- 11. Suppose that f(x) is a function for which f(1) = -3 and f'(1) = 1. If g(x) = (x + 1) f(x), then g'(1) = ?
- (A) 2 (B) 0 (C) 3 (D) 1 (E) 1

- 12. The position of a body at time t seconds is $s = 2t^3 15t^2 + 54t 12$ feet. What is the body's velocity, in ft/sec, at the time the acceleration is 6 ft/sec²?
- (A) 12 (B) 0 (C) -9 (D) 18 (E) -15