1. If $f(x)=\left(\frac{x^{6}+1}{x^{3}+1}\right)^{2}$, then $f^{\prime}(1)=$ ?
(A) 1 (B) 6
(C) 3
(D) 2
(E) 9
2. A curve called the Folium of Descartes is given by the equation $x^{3}+y^{3}-9 x y=0$. Find the slope of this curve at the point $(4,2)$.
(A) $-\frac{2}{3}$
(B) $3 \sqrt{2}$
(C) $-\frac{1}{3}$
(D) $\frac{5}{4}$
(E) -6
3. A water tank has the shape of an inverted circular cone with base radius 2 m and height 4 m . If water is being pumped into the tank at a rate of $2 \mathrm{~m}^{3} / \mathrm{min}$, find the rate (in $\mathrm{m} / \mathrm{min}$ ) at which the level is rising when the water is 3 m deep.
(A) $\frac{1}{4}$
(B) $\frac{8}{9 \pi}$
(C) $\frac{\pi}{6 \sqrt{3}}$
(D) $\frac{\sqrt{2}}{2 \pi}$
(E) $\frac{\pi}{12}$
4. How many critical points does the function

$$
f(x)=1+2 x^{5 / 3}-5 x^{2 / 3}
$$

have?
(A) 2
(B) 4
(C) 1
(D) $3(\mathrm{E}) 0$
5. Let $f$ be a continuous function on the interval $[a, b]$ and differentiable on $(a, b)$. Suppose that $f^{\prime}(x)=0$ for at most three distinct values of $x$ where $a<x<$ b. What is the maximum possible number of solutions of the equation $f(x)=$ 10 in [a,b] ?
(A) 3
(B) 1
(C) 4
(D) 0
(E) 2
6. The function $f(x)=5-9 x+6 x^{2}-x^{3}$ is increasing
(A) on the interval $(-\infty, 3]$
(B) on the intervals $(-\infty, 1]$ and $[3, \infty)$
(C) on the interval $[1, \infty)$
(D) on the interval $[1,3]$
(E) on the intervals $(-\infty,-1]$ and $[0,3]$
7. If $f(x)$ is defined on the interval [0, 4] by

$$
f(x)=(x-1)^{2}(x-3)^{2}
$$

then $f(2)$ is a
(A) global minimum
(B) local but not global minimum
(C) global maximum
(D) $y$-coordinate of a point of inflection
(E) local but not global maximum
8. The graph of $y=x^{5}+5 x^{4}-7 x+8$
(A) is concave down on the interval $(0, \infty)$
(B) has a point of inflection at $\mathrm{x}=-3$ only
(C) is concave up on the interval $(-\infty,-3)$
(D) has points of inflection at $x=0$ and $x=-3$
(E) has a point of inflection at $x=0$ only
9. The graph of the function

$$
g(x)=\frac{x^{2}-x}{x^{2}+x-2}
$$

has
(A) 1 vertical asymptote and no horizontal asymptotes
(B) 2 vertical asymptotes and 1 horizontal asymptote
(C) 1 vertical asymptote and 2 horizontal asymptote
(D) 2 vertical asymptotes and 2 horizontal asymptotes
(E) 1 vertical asymptote and 1 horizontal asymptote
10. The graph of $y=\frac{x}{(x+1)^{2}}$ most closely resembles which of the following?

