1. If
$$f(x) = \left(\frac{x^6 + 1}{x^3 + 1}\right)^2$$
, then $f'(1) = ?$
(A) 1 (B) 6 (C) 3 (D) 2 (E) 9

2. A curve called the Folium of Descartes is given by the equation
$$x^3 + y^3 - 9xy = 0$$
. Find the slope of this curve at the point (4,2).

(A)
$$-\frac{2}{3}$$
 (B) $3\sqrt{2}$ (C) $-\frac{1}{3}$ (D) $\frac{5}{4}$ (E) -6

3. A water tank has the shape of an inverted circular cone with base radius 2m and height 4m. If water is being pumped into the tank at a rate of 2m³/min, find the rate (in m/min) at which the level is rising when the water is 3m deep.

(A)
$$\frac{1}{4}$$
 (B) $\frac{8}{9\pi}$ (C) $\frac{\pi}{6\sqrt{3}}$ (D) $\frac{\sqrt{2}}{2\pi}$ (E) $\frac{\pi}{12}$

4. How many critical points does the function

 $f(x) = 1 + 2x^{5/3} - 5x^{2/3}$

have?

(A) 2 (B) 4 (C) 1 (D) 3(E) 0

5. Let f be a continuous function on the interval [a,b] and differentiable on (a,b). Suppose that f '(x) = 0 for at most three distinct values of x where a < x < b. What is the maximum possible number of solutions of the equation f(x) = 10 in [a,b] ?

(A) 3 (B) 1 (C) 4 (D) 0 (E) 2

6. The function $f(x) = 5 - 9x + 6x^2 - x^3$ is increasing

- (A) on the interval $(-\infty, 3]$
- (B) on the intervals $(-\infty, 1]$ and $[3, \infty)$
- (C) on the interval $[1, \infty)$
- (D) on the interval [1, 3]
- (E) on the intervals $(-\infty, -1]$ and [0, 3]

7. If f(x) is defined on the interval [0, 4] by $f(x) = (x - 1)^2 (x - 3)^2$

then f(2) is a

- (A) global minimum
- (B) local but not global minimum
- (C) global maximum
- (D) y-coordinate of a point of inflection
- (E) local but not global maximum

- 8. The graph of $y = x^5 + 5x^4 7x + 8$
 - (A) is concave down on the interval $(0, \infty)$

- (B) has a point of inflection at x = -3 only
- (C) is concave up on the interval $(-\infty, -3)$
- (D) has points of inflection at x = 0 and x = -3
- (E) has a point of inflection at x = 0 only

9. The graph of the function

$$g(x) = \frac{x^2 - x}{x^2 + x - 2}$$

has

- (A) 1 vertical asymptote and no horizontal asymptotes
- (B) 2 vertical asymptotes and 1 horizontal asymptote
- (C) 1 vertical asymptote and 2 horizontal asymptote
- (D) 2 vertical asymptotes and 2 horizontal asymptotes
- (E) 1 vertical asymptote and 1 horizontal asymptote

10. The graph of $y = \frac{x}{(x+1)^2}$ most closely resembles which of the following?