1. A cylindrical can with a bottom but no top has volume V . The radius of such a can with least possible surface area is
(A) $V+\pi$
(B) $\left(\frac{V}{\pi}\right)^{\frac{1}{3}}$
(C) $(2 \mathrm{~V})^{\frac{1}{3}}$
(D) $\frac{\mathrm{V}}{\pi}$
(E) $\sqrt{\frac{V}{\pi}}$
2. If $N=(1.99)^{5}-2(1.99)^{2}+1$ and we use the tangent line approximation to obtain the approximate value of N we obtain
(A) 24.32
(B) 25.72
(C) 24.28
(D) 25.70
(E) 24.30
3. The iterative scheme using Newton's Method for computing $\sqrt[4]{3}$ is
(A) $x_{n+1}=\frac{2}{3} x_{n}+\frac{1}{x_{n}^{2}}$
(B) $x_{n+1}=\frac{x_{n}}{4}+\frac{3}{x_{n}^{3}}$
(C) $x_{n+1}=x_{n}+\frac{3}{4 x_{n}}$
(D) $x_{n+1}=\frac{x_{n}}{2}+\frac{4}{3 x_{n}^{2}}$
(E) $x_{n+1}=\frac{3}{4}\left(x_{n}+\frac{1}{x_{n}^{3}}\right)$
4. The general antiderivative of $1-\sin ^{2} t$ is
(A) $t-\frac{\sin ^{3} t}{3}+C$
(B) $\frac{t}{2}+\frac{\sin 2 t}{4}+C$
(C) $\mathrm{t}-\sin 2 \mathrm{t}+\mathrm{C}$
(D) $\frac{\mathrm{t}}{2}-\frac{\cos 2 \mathrm{t}}{4}+\mathrm{C}$
(E) $-\frac{\cos ^{2} t}{3} \sin t+C$
5. A train is cruising at 60 mph when suddenly the engineer notices a cow on the track ahead of the train. The engineer applies the brakes, causing a constant deceleration in the train. Two minutes later the train grinds to a halt, barely touching the cow, which is too frightened to move. How far back was the train when the brakes were applied?
(A) 1 mile
(B) $\frac{3}{2}$ mile
(C) $\frac{1}{4}$ mile
(D) $\frac{5}{8}$ mile
(E) $\frac{3}{4}$ mile
6. A function $y=f(x)$ has a graph in the $x y$-plane which passes through the point $(1,4)$ with slope 2 .

$$
\text { If } \frac{d^{2} y}{d x^{2}}=\frac{3}{x^{4}}, \text { then } y=
$$

(A) $\frac{1}{4 x^{2}}+4 x-\frac{1}{4}$
(B) $\frac{3}{2 x}+\frac{7}{2} x-1$
(C) $\frac{1}{x^{4}}+6 x-3$
(D) $\frac{1}{2 x^{2}}+3 x+\frac{1}{2}$
(E) $\frac{3}{x^{2}}+8 x-7$
7. $\int_{0}^{1} 15 x^{4} \sqrt{3 x^{5}+1} \mathrm{dx}=$?
(A) $\frac{16}{3}$
(B) 4
(C) $\frac{14}{3}$
(D) 5
(E) $\frac{13}{3}$
8. Let $f(x)=x^{2}-6 x+10$, let $P=\left\{0, \frac{3}{2}, \frac{5}{2}, 3\right\}$ and let $c_{1}=1, c_{2}=2$, $c_{3}=3$ be numbers chosen in the three subintervals of P. The value of the resulting Riemann sum for f on the interval $[0,3]$ is
(A) 9
(B) $\frac{21}{2}$
(C) 12
(D) $\frac{19}{2}$
(E) 10
9. Find the area of the shaded region
(A) $\frac{8}{3}$
(B) $\frac{5}{2}$
(C) 3
(D) $\frac{17}{6}$
(E) $\frac{13}{5}$
10. If the function F is defined by the equation $F(x)=\int_{0}^{X} \frac{1}{1+t^{2}} d t$, then the graph of F most clearly resembles
(A)
(C)
(D)
(E)

