1. If $f(1)=1, f(1.5)=3, f(2)=1, f(2.5)=-1, f(3)=-2$, the approximate value of $\int_{1}^{3} f(x) d x$ given by Simpson's Rule is
(A) $\frac{5}{4}$
(B) 2
(C) $\frac{4}{3}$
(D) $\frac{7}{6}$
(E) $\frac{3}{2}$
2. The area of the region between the graphs of

$$
y=1-5 x+2 x^{2} \text { and } y=1+x-x^{2} \text { is }
$$

(A) $\frac{9}{2}$
(B) 4
(C) $\frac{13}{3}$
(D) 5
(E) $\frac{25}{6}$
3. The area of the region between the graphs of $x=y^{3}-y$ and $x=1-y^{4}$ is
(A) $\frac{8}{5}$
(B) 2
(C) $\frac{3}{2}$
(D) $\frac{5}{3}$
(E) $\frac{11}{6}$
4. The base of a solid is the region bounded by the parabolas $y=x^{2}$ and $y=2-x^{2}$. The cross-sections perpendicular to the x-axis are squares with one side lying along the base. Find the volume of the solid.
(A) $\int_{-1}^{1} \pi\left(1-x^{2}\right)^{4} d x$
(B) $\int_{-1}^{1}\left(1-x^{2}\right)^{2} d x$
(C) $\int_{-1}^{1} \frac{\sqrt{3}}{4}\left(1-x^{2}\right)^{3} d x$
(D) $\int_{-1}^{1} 4\left(1-x^{2}\right)^{2} d x$
(E) $\int_{-1}^{1} 2\left(1-x^{2}\right) d x$
5. Let R be the region (in the $1^{\text {st }}$ quadrant) bounded by the graphs of $y=x, y=\frac{1}{x}, x=2$ and $x=3$. Find the volume of the solid obtained by revolving R about the x -axis.
(A) $\frac{19}{3} \pi$
(B) 6π
(C) $\frac{37}{6} \pi$
(D) $\frac{13}{2} \pi$
(E) $\frac{32}{5} \pi$
6. The volume of the solid generated by revolving the shaded region about the x -axis is
(A) $\frac{11 \pi}{4}$
(B) $\frac{5 \pi}{2}$
(C) 3π
(D) $\frac{8}{3} \pi$
(E) $\frac{17}{6} \pi$
7. The volume of the solid generated by revolving the region between the x-axis and the curve $y=x^{2}-2 x$ about the line $x=2$ is given by the integral
(A) $\int_{0}^{2} \pi\left[2-\left(x^{2}-2 x\right)\right]^{2} d x$
(B) $\int_{0}^{2} 2 \pi(2-x)\left(2 x-x^{2}\right) d x$
(C) $\int_{0}^{2} \pi\left(2 x-x^{2}\right)^{2} d x$
(D) $\int_{0}^{2} 2 \pi x\left(2 x-x^{2}\right) d x$
(E) $\int_{0}^{2} \pi\left(2 x-x^{2}\right) d x$
8. The length of the curve $x=\frac{2}{3}(y-1)^{3 / 2}$ from $y=1$ to $y=4$ is
(A) $\frac{29}{6}$
(B) $\frac{17}{4}$
(C) $\frac{9}{2}$
(D) $\frac{24}{5}$
(E) $\frac{14}{3}$
9. Find the length of the curve $y=\frac{4}{5} x^{5 / 4}$ from $x=0$ to $x=9$.
(Hint: to evaluate the resulting integral, make a bold u-substitution)
(A) $\frac{108}{7}$
(B) $\frac{76}{5}$
(C) $\frac{232}{15}$
(D) $\frac{95}{6}$
(E) $\frac{325}{21}$
10. The area of the surface generated by revolving the curve $y=x^{2}$ for $0 \leq x \leq 2$ about the x-axis is
(A) $\int_{0}^{2} 2 \pi x^{2} \sqrt{1+4 x^{2}} d x$
(B) $\int_{0}^{2} 2 \pi x \sqrt{1+x^{4}} d x$
(C) $\int_{0}^{2} 2 \pi x^{2} \sqrt{1+2 x} d x$
(D) $\int_{0}^{2} 2 \pi x \sqrt{1+4 x^{2}} d x$
(E) $\int_{0}^{2} 2 \pi x^{2} \sqrt{1+x^{4}} d x$

