1. If f(1) = 1, f(1.5) = 3, f(2) = 1, f(2.5) = -1, f(3) = -2, the approximate value of $\int_{1}^{3} f(x) dx$ given by Simpson's Rule is

(A)
$$\frac{5}{4}$$
 (B) 2 (C) $\frac{4}{3}$ (D) $\frac{7}{6}$ (E) $\frac{3}{2}$

2. The area of the region between the graphs of

$$y = 1 - 5x + 2x^2$$
 and $y = 1 + x - x^2$ is

- (A) $\frac{9}{2}$
- (B) 4
- (C) $\frac{13}{3}$
- (D) 5
- (E) $\frac{25}{6}$

3. The area of the region between the graphs of $x = y^3 - y$ and $x = 1 - y^4$ is

- (A) $\frac{8}{5}$
- (B) 2
- (C) $\frac{3}{2}$
- (D) $\frac{5}{3}$
- (E) $\frac{11}{6}$
- 4. The base of a solid is the region bounded by the parabolas $y = x^2$ and $y = 2 x^2$. The cross-sections perpendicular to the x-axis are squares with one side lying along the base. Find the volume of the solid.

(A)
$$\int_{-1}^{1} \pi (1 - x^2)^4 dx$$

(B) $\int_{-1}^{1} (1 - x^2)^2 dx$
(C) $\int_{-1}^{1} \frac{\sqrt{3}}{4} (1 - x^2)^3 dx$
(D) $\int_{-1}^{1} 4 (1 - x^2)^2 dx$
(E) $\int_{-1}^{1} 2 (1 - x^2) dx$

5. Let R be the region (in the 1st quadrant) bounded by the graphs of y = x, $y = \frac{1}{x}$, x = 2 and x = 3. Find the volume of the solid obtained revolving R about the x-axis.

by

(A)
$$\frac{19}{3} \pi$$
 (B) 6π (C) $\frac{37}{6} \pi$ (D) $\frac{13}{2} \pi$ (E) $\frac{32}{5} \pi$

6. The volume of the solid generated by revolving the shaded region about the x-axis is

(A)
$$\frac{11\pi}{4}$$

(B) $\frac{5\pi}{2}$
(C) 3π
(D) $\frac{8}{3}\pi$

(E) <u>17</u> π

7. The volume of the solid generated by revolving the region between the x-axis and the curve $y = x^2 - 2x$ about the line x = 2 is given by the integral

(A)
$$\int_{0}^{2} \pi \left[2 - (x^{2} - 2x) \right]^{2} dx$$
 (B) $\int_{0}^{2} 2\pi (2 - x)(2x - x^{2}) dx$
(C) $\int_{0}^{2} \pi (2x - x^{2})^{2} dx$ (D) $\int_{0}^{2} 2\pi x (2x - x^{2}) dx$
(E) $\int_{0}^{2} \pi (2x - x^{2}) dx$

8. The length of the curve $x = \frac{2}{3}(y-1)^{3/2}$ from y = 1 to y = 4 is

(A)
$$\frac{29}{6}$$
 (B) $\frac{17}{4}$ (C) $\frac{9}{2}$ (D) $\frac{24}{5}$ (E) $\frac{14}{3}$

9. Find the length of the curve $y = \frac{4}{5} x^{5/4}$ from x = 0 to x = 9. (Hint: to evaluate the resulting integral, make a bold u-substitution)

(A)
$$\frac{108}{7}$$
 (B) $\frac{76}{5}$ (C) $\frac{232}{15}$ (D) $\frac{95}{6}$ (E) $\frac{325}{21}$

10. The area of the surface generated by revolving the curve $y = x^2$ for $0 \le x \le 2$ about the x-axis is

(A)
$$\int_{0}^{2} 2\pi x^{2} \sqrt{1 + 4x^{2}} dx$$

(B)
$$\int_{0}^{2} 2\pi x \sqrt{1 + x^{4}} dx$$

(C) $\int_{0}^{2} 2\pi x^{2} \sqrt{1 + 2x} dx$
(D) $\int_{0}^{2} 2\pi x \sqrt{1 + 4x^{2}} dx$
(E) $\int_{0}^{2} 2\pi x^{2} \sqrt{1 + x^{4}} dx$