1. $\lim _{x \varnothing-1} \frac{x^{2}-6 x-7}{x^{2}+3 x+2}=$?
(A) $\quad-9$
(B) 1
(C) -8
(D) $-\frac{7}{2}$
(E) ∞
2. If $\sqrt{1+x^{2}} \leq x f(x) \leq 1+\subseteq x \subseteq$, then $\lim _{x \not \subset \infty} f(x)=$?
(A) 1
(B) 2
(C) ∞
(D) 0
(E) $\frac{1}{2}$
3. For $x \neq 2, f(x)=\frac{x^{2}+x-6}{x^{2}+3 x-10}$. If f is also defined and continuous at x $=2$, then $f(2)=$?
(A) $-\frac{3}{5}$
(B) $\frac{4}{3}$
(C) Insufficient data given
(D) 1
(E) $\frac{5}{7}$
4. If, L_{1} is the tangent line to the graph of $y=\cos x$ at $\left(\frac{\pi}{2}, 0\right)$ and L_{2} is the tangent line to the graph of $y=\frac{x^{2}+1}{2}$ at $(1,1)$ then L_{1} and L_{2} cross at what angle?
(A) 0
(B) $\frac{\pi}{2}$
(C) $-\frac{\pi}{3}$
(D) $\frac{\pi}{4}$
(E) $-\frac{\pi}{6}$
5. If $f(x)=x^{2}(x+1)\left(x^{2}+x-5\right)^{3}$, then $f^{\prime}(1)=$?
(A) -49
(B) 101
(C) -9
(D) 27
(E) 0
6. The equation of the tangent line to the curve

$$
x \sin 2 y=y \cos 2 x
$$

at the point $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ is
(A) $y=-\frac{x}{2}+\frac{5}{8} \pi$
(B) $y=2 x$
(C) $y=x+\frac{\pi}{4}$
(D) $y=\frac{\pi}{2}$
(E) $y=-x+\frac{3}{4} \pi$
7. If $y=\tan ^{2} x, \quad$ then $\left.\frac{d y}{d x}\right|_{x=\pi / 4}=$?
(A) 2
(B) $\sqrt{2}$
(C) 4
(D) 1
(E) $-\frac{1}{2}$
8. If $f(x)=(1+\sqrt{1+x})^{3 / 2}$, then $f^{\prime}(8)=$?
(A) $\frac{1}{2}$
(B) $\sqrt{2}$
(C) $\frac{3}{2}$
(D) $\frac{3}{\sqrt{2}}$
(E) $\frac{3}{5}$
9. A point moves on the parabola $y=x^{2}-2 x$. The motion is such that the rate of change of the x-coordinate is never zero (The x-coordinate never rests, not even for an instant.) Find the y-coordinate of the point on the curve at which
the rate of change of the y-coordinate is three times the rate of change of the x-coordinate.
(A) 3
(B) $-\frac{3}{4}$
(C) 0
(D) $\frac{5}{4}$
(E) 8
10. The global maximum M and the global minimum m of the function

$$
f(x)=\sin ^{2} x+\cos x
$$

on the interval $\left[-\frac{\pi}{2}, \pi\right]$ is
(A) $\mathrm{M}=1 \quad \mathrm{~m}=-1$
(B) $M=5 / 4 \quad m=1$
(C) $M=1 \quad m=-1$
(D) $M=5 / 4 \quad m=0$
(E) $M=5 / 4 \quad m=-1$
11. The following graph is the graph of the function $y=f^{\prime}(x)$ (repeat, the graph of the first derivative of f).

How many of the following statements are true?
i) the graph of f has an inflection point at $(0,0)$.
ii) $f(x)$ has a local maximum at $x=0$.
iii) $f(x)$ has a local maximum at $x=-1$.
iv) the graph of f has an inflection point where $x=-1$.
v) the graph of f is concave downward for $-2<x<0$.
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5
12. The graph of $y=\frac{x^{3}+x-2}{x^{2}-x}$ most closely resembles which of the following?
(A)
(B)
(C)
(D)
(E)
13. Which one of the following functions has exactly one vertical asymptote and exactly one horizontal asymptote?
(A) $\frac{2 x^{2}+3 x+1}{x^{2}+x+6}$
(B) $\frac{x+1}{x^{2}+1}$
(C) $\frac{x^{3}}{x^{2}-1}$
(D) $\frac{(2 x+1)\left(x^{2}-2\right)}{\left(x^{2}+2\right)(3 x-5)}$
(E) $\frac{x^{4}}{(x+1)\left(x^{2}+4\right)}$
14. The slope of the curve $y=6 x^{2}-x^{3}$ varies as x varies. What is the maximum possible slope?
(A) 5
(B) 12
(C) 9
(D) 3
(E) 6
15. Use linear approximation (the tangent line method) to approximate the value of $(2.03)^{4}-(2.03)^{2}$
(A) 12.82
(B) 12.83
(C) 12.84
(D) 12.85
(E) 12.86
16. If $F(x)$ is an anti derivative of $10 x\left(x^{2}-2\right)^{4}$ and $F(2)=30$, then $F(1)=$
(A) -3
(B) 4
(C) $-\frac{1}{5}$
(D) $\frac{4}{3}$
(E) 0
17. $\int_{1}^{2} \frac{2-x}{\sqrt{4 x-3-x^{2}}} d x=$?
(A) $\frac{1}{2}$
(B) $\sqrt{2}$
(C) $\frac{3}{2}$
(D) 1 (E) $\sqrt{3}$
18. The following table gives some values of a continuous function f. Use these values and the Trapezoid Rule to approximate

$$
\int_{2}^{3.5} f(x) d x .
$$

x	2.0	2.25	2.50		2.75	3.03 .25	3.50
$\mathrm{f}(\mathrm{x})$	1	2	-1		1	0	3

(A) 0.75
(B) 1.25
(C) 0.625
(D) 1.667
(E) 1
19. Let the function $F(x)$ be defined on $(-\infty, \infty)$ by the equation

$$
F(x)=\int_{0}^{x} \frac{t^{2}-1}{t^{2}+1} d t
$$

Then $F(x)$
(A) has a local minimum at $x=1$.
(B) is a decreasing function.
(C) has a point of inflection at $x=1$.
(D) is always concave down.
(E) is always positive.
20. Let f be a function defined on the interval [-2,3]. If

$$
\sum_{k=1}^{5} f\left(c_{k}\right) \Delta x_{k}
$$

is a Riemann Sum for f using a partition having subintervals of equal length then, of the numbers listed below, which one is the only possibility for c_{4} ?
(A) $\frac{17}{8}$
(B) $\frac{3}{4}$
(C) $-\frac{1}{2}$
(D) $\frac{4}{3}$
(E) -2
21. Let $S=\sum_{k=1}^{n}\left(3 c_{k}-c_{k}^{2}\right) \Delta x_{k}$ for some partition P of [0,3]. Which of the following numbers can we make S arbitrarily close to by choosing the norm of P, IIPII, to be sufficiently small?
(A) 5 (B) $\frac{9}{2}$
(C) 4
(D) $\frac{14}{3}$
(E) $\frac{25}{6}$
22. The volume of the solid generated by revolving the triangle bounded by the lines

$$
y=-\frac{1}{4} x+2, \quad y=\frac{1}{4} x+2 \text { and } x=4
$$

about the line $y=-1$ is
(A) 18π
(B) 36π
(C) 28π
(D) 30π
(E) 24π
23. The volume obtained by revolving the region bounded by $y=6 x-3 x^{2}$ and the y-axis about the line $x=2$ is
(A) 6π
(B) $\frac{15}{2} \pi$
(C) 8π
(D) $\frac{25}{3} \pi$
(E) 9π
24. The y-coordinate of the centroid of a thin plate of constant (uniform) density covering the region defined in problem 23 is
(A) $\frac{6}{5}$
(B) $\frac{5}{4}$
(C) $\frac{7}{6}$
(D) $\frac{4}{3}$
(E) $\frac{9}{7}$
25. How much work (in ft-lbs) does it take to pump gasoline from a three-quarters full upright cylinder tank of radius 4 ft . and height 8 ft . to a level 4 ft . above the top of the tank? (Gasoline weighs 42 lbs . per cubic foot.)
(A) $45,360 \pi$
(B) $26,880 \pi$
(C) $43,008 \pi$
(D) $48,384 \pi$
(E) $36,288 \pi$

