Name: \qquad
Instructor-section: \qquad

Math 125, Test II
October 29, 1998

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

1. (a)
(b)
(c)
(d)
(e)
2. (a)
(b)
(c)
(d)
(e)
3. (a)
(b)
(c)
(d)
(e)
4. (a)
(b)
(c)
(d)
(e)
5. (a)
(b)
(c)
(d)
(e)
6. (a)
(b)
(c)
(d)
(e)
7. (a)
(b)
(c)
(d)
(e)
8. (a)
(b)
(c)
(d)
(e)

DO NOT WRITE IN THIS BOX!

Total multiple choice: \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad
14. \qquad

Total:

Name: \qquad
Instructor-section: \qquad Bullwinkle

Multiple Choice

1. (5pts) The Mean Value Theorem states that for a suitable function $y=f(x)$ on a closed interval $[a, b]$, there is a number c in the interval where $f^{\prime}(c)$ equals the average rate of change of $f(x)$ on $[a, b]$. For the function $f(x)=\frac{1}{x}$ on the interval $[3,12]$, what value of c satisfies the conclusion of the theorem?
(a) 5
(b) 6
(c) 7
(d) 8
(e) 9
2. (5pts) Which of the following functions is an antiderivative for

$$
x \cos x \quad ?
$$

(a) $x \sin x+\cos x$
(b) $\frac{x^{2}}{2} \cos x$
(c) $x \sin x$
(d)
(e)

Name:
Instructor-section: Bullwinkle
3.(5pts) The equation $x^{3}+x-1=0$ has exactly one real solution. Starting with the estimate $x_{0}=1$, use one step of Newton's method to find a better approximation:
(a) $\frac{1}{2}$
(b) 0
(c) $\frac{3}{4}$
(d) $\frac{3}{2}$
(e) 2
4. (5pts) Which of the following is the linearization of the function $f(x)=3 x^{2}-2$ at $x=2$?
(a) $y=3 x+2$
(b) $y=-6 x+2$
(c) $y=x+1$
(d) $y=12 x-14$
(e) $y=6 x-10$

Name:
Instructor-section: \qquad
5.(5pts) What are the asymptotes (both vertical and horizontal) for the graph of

$$
y=\frac{(2 x-1)^{2}}{(x-2)(x+3)} ?
$$

(a) $y=2, x=-2, x=3$
(b) $y=2, y=-3, x=4$
(c) $y=2 x-1, y=2, y=3$
(d) $x=-3$, and $x=5$
(e) $y=4, x=2, x=-3$
6.(5pts) Let $f(x)=x^{20}-2 x^{10}+5$. Which of the following statements is true regarding $x=1$ (the point $(1,4))$?
(a) $x=1$ is a point of inflection
(b) $x=1$ is a local maximum
(c) $x=1$ is a local minimum
(d) $x=1$ is a critical point but neither a local maxima nor a local minima
(e) $x=1$ is a not a critical point

Name:

> Instructor-section:
\qquad
7.(5pts) A continuous function $y=f(x)$ has the following properties:
(a) $f^{\prime}(x)>0$ for $x>5$
(b) $f^{\prime}(x)<0$ for $x<5$
(c) $f(5)=10$.

How many solutions are there to the equation $f(x)=0$?
(a) 2
(b) 3
(c) 0
(d) 1
(e) infinitely many
8. (5pts) The limit $\lim _{x \rightarrow \infty} \frac{10 x^{3}+6 x+4}{2 x^{3}+3 x+2}$ is
(a) 5
(b) $\frac{3}{4}$
(c) 2
(d) $\frac{10}{3}$
(e) 0

Name:
Instructor-section: Bullwinkle

Partial Credit

9.(10pts) Find the absolute minimum and the absolute maximum of the function $f(x)=$ $x^{2}-2 x$ on the interval $[0,3]$.

Name:
Instructor-section: Bullwinkle
10.(10pts) Consider the function $y=f(x)=-x^{3}-3 x^{2}+2$.
(a) Find the intervals where the function is increasing and where the function is decreasing. Locate any local extrema.
(b) Find the intervals on which $f(x)$ is concave up and those on which it is concave down. Locate all inflection points.

Name:
Instructor-section: Bullwinkle
11.(10pts) A function $y=f(x)$ on $(0, \infty)$ satisfies the following conditions:
$f(1)=2, f(3)=1$,
$f^{\prime}(x)>0$ on $(0,1), f^{\prime}(x)<0$ on $(1, \infty)$,
$f^{\prime \prime}(x)<0$ on $(0,3), f^{\prime \prime}(x)>0$ on $(3, \infty)$
$\lim _{x \rightarrow \infty} f(x)=0, \lim _{x \rightarrow 0^{+}} f(x)=-\infty$.
Sketch the graph.
4in by 5 in (coor scaled 500)

Name:
Instructor-section: Bullwinkle
12. (10pts) A right triangle with base 10 and adjacent angle θ has area $A=50 \tan \theta$. Find the differential $d A$ and use this to estimate the change in A as θ increases from $\frac{\pi}{4}$ to $\frac{\pi}{4}+0.01$.

1in by 1 in (triangle scaled 200)

Name:
Instructor-section: Bullwinkle
13.(10pts) Each point P on the graph of $y=\frac{1}{4+x^{2}}, x>0$, determines a rectangle in the first quadrant as shown in the diagram:

1in by 1 in (graph scaled 300)
Find the dimensions of the rectangle with the largest area.

Name:
Instructor-section: Bullwinkle
14.(10pts) Find the equation of the function $y=f(x)$ that satisfies the initial value problem $y^{\prime}(x)=-\sin x+12 x, y(0)=3$.

Name: \qquad
Instructor-section: \qquad
Math 125, Test II
October 29, 1998

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

1. (a)
(•)
(c)
(d)
(e)
2. (•)
(b)
(c)
(d)
(e)
3. (a)
(b)
(•)
(d)
(e)
4. (a)
(b)
(c)
(•)
(e)
5. (a)
(b)
(c)
(d)
(•)
6. (a)
(•)
(c)
(d)
(e)
7. (a)
(b)
(•)
(d)
(e)
8.

(b)
(c)
(d)
(e)

DO NOT WRITE IN THIS BOX!

Total multiple choice: \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad
14. \qquad
Total:

