Name:		_
Instructor-section:	Bullwinkle	

Math 125, Test II

October 29, 1998

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!

PLE	EASE MA	RK YOUR A	ANSWERS V	VITH AN X	, not a circle!
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)

DO NOT WRITE IN THIS BOX!		
Total multiple choice:		
9.		
10.		
11.		
12.		
13.		
14.		
Total:		

Name:			

Bullwinkle Instructor-section:

Multiple Choice

1.(5pts) The Mean Value Theorem states that for a suitable function y = f(x) on a closed interval [a,b], there is a number c in the interval where f'(c) equals the average rate of change of f(x) on [a,b]. For the function $f(x) = \frac{1}{x}$ on the interval [3,12], what value of csatisfies the conclusion of the theorem?

(a) 5

(b) 6

(c) 7

(d) 8

(e) 9

(e)

2.(5pts) Which of the following functions is an antiderivative for

 $x\cos x$?

- (a) $x \sin x + \cos x$
- (b) $\frac{x^2}{2}\cos x$ (c) $x\sin x$
- (d)

2

Name:			

Instructor-section: Bullwinkle

3.(5pts) The equation $x^3 + x - 1 = 0$ has exactly one real solution. Starting with the estimate $x_0 = 1$, use one step of Newton's method to find a better approximation:

(a) $\frac{1}{2}$

- (b) 0
- (c) $\frac{3}{4}$
- (d) $\frac{3}{2}$
- (e) 2

4.(5pts) Which of the following is the linearization of the function $f(x) = 3x^2 - 2$ at x = 2?

(a) y = 3x + 2 (b) y = -6x + 2 (c) y = x + 1 (d) y = 12x - 14 (e) y = 6x - 10

Name:

Instructor-section: Bullwinkle

5.(5pts) What are the asymptotes (both vertical and horizontal) for the graph of

$$y = \frac{(2x-1)^2}{(x-2)(x+3)} \quad ?$$

- (a) y = 2, x = -2, x = 3
- (b) y = 2, y = -3, x = 4(d) x = -3, and x = 5
- (c) y = 2x 1, y = 2, y = 3
- (e) y = 4, x = 2, x = -3

6.(5pts) Let $f(x) = x^{20} - 2x^{10} + 5$. Which of the following statements is true regarding x = 1 (the point (1, 4))?

- (a) x = 1 is a point of inflection
- (b) x = 1 is a local maximum
- (c) x = 1 is a local minimum
- (d) x = 1 is a critical point but neither a local maxima nor a local minima
- (e) x = 1 is a not a critical point

Name:

Instructor-section: Bullwinkle

7.(5pts) A continuous function y = f(x) has the following properties:

- (a) f'(x) > 0 for x > 5
- (b) f'(x) < 0 for x < 5
- (c) f(5) = 10.

How many solutions are there to the equation f(x) = 0?

- (a) 2
- (b) 3
- (c) 0
- (d) 1
- (e) infinitely many

8.(5pts) The limit $\lim_{x\to\infty} \frac{10x^3 + 6x + 4}{2x^3 + 3x + 2}$ is
(a) 5 (b) $\frac{3}{4}$ (c) 2

- (d) $\frac{10}{3}$
- (e) 0

Name:		
Instructor-section:	Bullwinkle	

Partial Credit

9.(10pts) Find the absolute minimum and the absolute maximum of the function $f(x) = x^2 - 2x$ on the interval [0, 3].

Name:		
Instructor-section:	Bullwinkle	

10.(10pts) Consider the function $y = f(x) = -x^3 - 3x^2 + 2$.

- (a) Find the intervals where the function is increasing and where the function is decreasing. Locate any local extrema.
- (b) Find the intervals on which f(x) is concave up and those on which it is concave down. Locate all inflection points.

Name:		
Instructor-section.	Bullwinkle	

11.(10pts) A function y = f(x) on $(0, \infty)$ satisfies the following conditions:

$$f(1) = 2, f(3) = 1,$$

 $f'(x) > 0 \text{ on } (0,1), f'(x) < 0 \text{ on } (1,\infty),$
 $f''(x) < 0 \text{ on } (0,3), f''(x) > 0 \text{ on } (3,\infty)$
 $\lim_{x\to\infty} f(x) = 0, \lim_{x\to 0^+} f(x) = -\infty.$

Sketch the graph.

4in by 5in (coor scaled 500)

Name:		
Instructor-section:	Bullwinkle	

12.(10pts) A right triangle with base 10 and adjacent angle θ has area $A=50\tan\theta$. Find the differential dA and use this to estimate the change in A as θ increases from $\frac{\pi}{4}$ to $\frac{\pi}{4}+0.01$.

1 in by 1 in (triangle scaled 200)

Name:		_
Instructor-section:	Bullwinkle	

13.(10pts) Each point P on the graph of $y = \frac{1}{4+x^2}$, x > 0, determines a rectangle in the first quadrant as shown in the diagram:

1 in by 1 in (graph scaled 300) Find the dimensions of the rectangle with the largest area.

Name:		
Instructor-section:	Bullwinkle	

14.(10pts) Find the equation of the function y=f(x) that satisfies the initial value problem $y'(x)=-\sin x+12x,\ y(0)=3.$

Name:		
Instructor-section:	Bullwinkle	

Math 125, Test II

October 29, 1998

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!						
1.	(a)	(ullet)	(c)	(d)	(e)	
2.	(ullet)	(b)	(c)	(d)	(e)	
3.	(a)	(b)	(ullet)	(d)	(e)	
4.	(a)	(b)	(c)	(ullet)	(e)	
5.	(a)	(b)	(c)	(d)	(•)	
6.	(a)	(ullet)	(c)	(d)	(e)	
7.	(a)	(b)	(ullet)	(d)	(e)	
8.	(ullet)	(b)	(c)	(d)	(e)	

DO NOT WRITE IN THIS BOX!					
Total multiple choice:					
9.					
10.					
11.					
12.					
13.					
14.					
Total:					