Name:		_
Instructor-section:	Bullwinkle	

Math 125, Test III

December 1, 1998

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!

PLE	EASE MA	RK YOUR A	ANSWERS V	VITH AN X	, not a circle!
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)

DO NOT WRITE IN THIS BOX!		
Total multiple choice:		
9.		
10.		
11.		
12.		
13.		
14.		
Total:		

Name: _____

Instructor-section: Bullwinkle

Multiple Choice

1.(5 pts.) Suppose that
$$\int_0^{-3} f(x)dx = 4$$
 and $\int_{-3}^0 g(x)dx = 2$. Find $\int_{-3}^0 (3f(x) + 4g(x)) dx$. (a) 4 (b) -4 (c) 18 (d) -17 (e) cannot be determined

2.(5 pts.) Partition the interval from 0 to 1 into n equal parts. In the k-th subinterval, choose the right-hand endpoint. The resulting Riemann sum for the integral $\int_0^1 3x^2 dx$ is

(a)
$$\frac{1}{n} \sum_{k=1}^{n} (3k^2)$$

(b)
$$\frac{1}{n} \sum_{k=1}^{n} (3k^2n^2)$$

(c)
$$\sum_{k=1}^{n} \left(\frac{k}{n} \left(3k^2 n^2 \right) \right)$$

(d)
$$\frac{1}{n} \sum_{k=1}^{n} \left(\frac{3}{n^2} \right)$$

(e)
$$\frac{1}{n} \sum_{k=1}^{n} \left(\frac{3k^2}{n^2} \right)$$

Name:

Instructor-section: Bullwinkle

3.(5 pts.) Suppose that f is a continuous function on [a,b] such that $\int_a^b f(x)dx = 0$. Which of the following must be true?

- (a) There exists exactly one c in [a, b] such that f(c) = 0.
- (b) f(c) = 0 for all c in [a, b] (c) There exists at least one c in [a, b] such that f(c) = 0 (d) $f(x) \le 0$ for all x in [a, b] (e) f'(c) = 0 for some c in [a, b]

4.(5 pts.) Find
$$\int \frac{\sin x}{(1+\cos x)^3} dx.$$
(a)
$$\frac{1}{2(1+\cos x)^2} + C$$
(b)
$$\frac{1+C}{2(1+\cos x)^2}$$
(c)
$$\frac{1}{2(1+\sin x)^2} + C$$
(d)
$$\frac{1+C}{2(1+\sin x)^2}$$
(e)
$$\frac{1}{(\sin x + \cos x)^2} + C$$

Name:

Instructor-section: Bullwinkle

5.(5 pts.) Find the derivative $\frac{dy}{dx}$ of the function $y = \int_0^{x^2} \sqrt{1+t^2} dt$. (a) $\sqrt{1+x^2}$ (b) $\sqrt{1+x^4}$ (c) $2x\sqrt{1+x^4}$ (d) $x^2\sqrt{1+x^2}$ (e) $x^2\sqrt{1+x^4}$

(a)
$$\sqrt{1+x^2}$$

(b)
$$\sqrt{1+x^4}$$

(c)
$$2x\sqrt{1+x^4}$$

(d)
$$x^2 \sqrt{1+x^2}$$

(e)
$$x^2 \sqrt{1+x^4}$$

6.(5 pts.) Solve the initial value problem

$$\frac{dy}{dx} = \frac{1}{x}, \quad y(1) = 2.$$

(a)
$$-\frac{1}{x^2} + 3$$

(b)
$$\frac{1}{x^2} + 1$$

(b)
$$\frac{1}{x^2} + 1$$
 (c) $-\int_1^x \frac{1}{t} dt + 2$

(d)
$$\int_{1}^{x} \frac{1}{t} dt + 2$$

(e)
$$\int_{1}^{x} \frac{1}{t} dt$$

Name: _____

Instructor-section: Bullwinkle

7.(5 pts.) Find the area of the region between the curves $y=1+\cos x$ and the x-axis, $0\leq x\leq \pi.$

- (a) 1
- (b) 2
- (c) 0
- (d) $\frac{1}{2}$
- (e) π

8.(5 pts.) If $\int_0^x f(t)dt = x \sin x$, find f(x).

(a) $x \sin x$

(b) $x \cos x$

(c) $\sin x + x \cos x$

- (d) $\cos x x \sin x$
- (e) $(\sin x)(\cos x)$

Name:		_
Instructor-section:	Bullwinkle	

Partial Credit

9.(10 pts.) A solid lying above the xy-plane is being sliced by planes perpendicular to the y-axis. The base of the solid is the circle of radius 3 in the xy-plane given by $x^2 + y^2 = 9$. Each slice is a rectangle with one side a chord of this circle and the other side a constant height 5. Set up a definite integral which will yield the volume. Do NOT evaluate this integral.

Name:	
Instructor-section:	Bullwinkle

10.(10 pts.) Let $f(x) = 3\sqrt{x}$. Find the average value of f on [1, 4].

Name:		
Instructor-section:	Bullwinkle	

11.(10 pts.) Find the area of the region enclosed by the parabola $y = x^2 + x - 1$ and the line y = x.

Name:	

12.(10 pts.) Integrate

$$\int_0^1 \frac{x^2}{\sqrt{x^3 + 1}} dx.$$

Name:		
Instructor-section:	Bullwinkle	

13.(10 pts.) Solve the initial value problem

$$\frac{dy}{dx} = 6x^2(x^3 - 1)^3, \quad y(1) = 3.$$

Name:		
Instructor-section:	Bullwinkle	

14.(10 pts.) Estimate the integral

$$\int_0^2 \frac{1}{1+x^2} dx$$

- (a) using the trapezoidal rule with n=4
- (b) using the Simpson's rule with n=4

We are looking for the formulas for these two rules. In particular **DO NOT** attempt to add the fractions and no error estimates are required.

Name:		_
Instructor-section:	Bullwinkle	

Math 125, Test III

December 1, 1998

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!

PLE	EASE MA	RK YOUR A	NSWERS V	WITH AN X	, not a circle!
1.	(a)	(ullet)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(●)
3.	(a)	(b)	(ullet)	(d)	(e)
4.	(ullet)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(ullet)	(d)	(e)
6.	(a)	(b)	(c)	(ullet)	(e)
7.	(a)	(b)	(c)	(d)	(●)
8.	(a)	(b)	(ullet)	(d)	(e)

DO NOT WRITE IN THIS BOX!		
Total multiple choice:		
9.		
10.		
11.		
12.		
13.		
14.		
Total:		