Name: \qquad
Instructor: D__ Dwyer

Exam I

September 21, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

1. (a)
(b)
(c)
(d)
(e)
2. (a)
(b)
(c)
(d)
(e)
3. (a)
(b)
(c)
(d)
(e)
4. (a)
(b)
(c)
(d)
(e)
5. (a)
(b)
(c)
(d)
(e)
6. (a)
(b)
(c)
(d)
(e)

DO NOT WRITE IN THIS BOX!

Total multiple choice: \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad
Total:

Name:
Instructor: Dwyer

Multiple Choice

1.(5 pts.) Find the limit

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}+x-6}
$$

(a) $-\infty$
(b) $\frac{1}{2}$
(c) $\frac{2}{3}$
(d) $\frac{4}{5}$
(e) ∞
2. (5 pts .) Find the average rate of change of $f(x)=x^{2}+2$ on the interval $[1,3]$.
(a) $\frac{1}{4}$
(b) $\frac{3}{2}$
(c) 4
(d) $\frac{11}{2}$
(e) 7

Name:
Instructor: __Dwer
3. (5 pts.) Find the limit

$$
\lim _{t \rightarrow 1^{-}} \frac{1}{t^{2}+t-2}
$$

(a) $-\infty$
(b) $\frac{-1}{2}$
(c) 0
(d) $\frac{1}{3}$
(e) ∞
4. (5 pts.) Differentiate the function

$$
f(x)=\tan x+\sec x
$$

(a) $-\cot x$
(b) $\tan ^{2} x+\sec ^{2} x$
(c) 0
(d) $\cot x+\csc x$
(e) $(\sec x)(\sec x+\tan x)$

Name:
Instructor: Dwyer
5. (5 pts.) Evaluate the derivative

$$
\frac{d}{d x}(\sin x+3 \cos x)^{100}
$$

at $x=\frac{\pi}{2}$.
(a) -300
(b) 0
(c) 1
(d) 100
(e) 3^{99}
6. (5 pts.) Let

$$
f(x)=\frac{x}{x^{2}+3 x+2}
$$

Calculate $f^{\prime}(x)$.
(a) $\frac{1}{2 x+3}$
(b) $\frac{1}{\left(x^{2}+3 x+2\right)^{2}}$
(c) $\frac{3 x^{2}+6 x+2}{\left(x^{2}+3 x+2\right)^{2}}$
(d) $\frac{-x^{2}+2}{\left(x^{2}+3 x+2\right)^{2}}$
(e) $\frac{2 x^{2}+5}{\left(x^{2}+3 x+2\right)^{2}}$

Name:
Instructor: __ Dwyer

Partial Credit

7. (10 pts.) Compute the slope of the graph of the curve $y=\sqrt{x+1}$ at the point $(8,3)$ using the limit definition of slope. Other methods will not receive credit.

Name:
Instructor: Dwyer
8. (10 pts.) The function $y=f(x)$ is defined by

$$
f(x)= \begin{cases}\frac{\sin x}{x} & \text { for } x>0 \\ -4 x & \text { for } x \leq 0\end{cases}
$$

For which values of x is $f(x)$ continuous? Justify your answer using limits.

Name:
Instructor: __ Dwyer
9. (10 pts.) Given the graph of the function below, sketch the graph of the derivative on the grid below. At which points is $g^{\prime}(x)$ not defined?

Name:
Instructor: __Dwer
10. (10 pts.) Suppose that $f(x)$ and $g(x)$ are differentiable functions such that $f(2)=4$, $f^{\prime}(2)=3, g(2)=1$ and $g^{\prime}(2)=5$. If $h(x)=f(x) \cdot(g(x)+1)$, compute $h^{\prime}(2)$.

Name:
Instructor: __Dwer
11. (10 pts.) A particle moves along the y-axis with its position being given by the function $y(t)=t^{4}-2 t^{3}+10 t$ for $-10 \leq t \leq 10$. Find the velocity of the particle at each time for which the acceleration is zero.

Name:
Instructor: __ Dwyer
12. (10 pts.) Find an equation of the tangent line to the graph of the function $y=\sin \left(\pi x^{4}\right)$ at the point $(1,0)$.

Name:
Instructor: __Dwer
13. (10 pts.) Given the function $f(x)=x^{3}-12 x+8$,
(1) Calculate $f(2)$ and $f(-2)$
(2) Show that the equation $f(x)=0$ has a solution on the interval $[-2,2]$.

