		.			
			Exam II per 26, 1999		
	r Code is ators.	in effect for	this examina	ation. All wor	rk is to be you
am	lasts for o			1	1 . 1
	-	ame is on eve ve all 11 pag			ecome detache
		Go	ood Luck!		
PLE	CASE MA	RK YOUR A	ANSWERS V	WITH AN X	, not a circle!
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)
			DO NOT V	VRITE IN T	HIS BOX!
		Tota	al multiple c	hoice:	
				8	
				9	
				10	
				11	
				12	
		1			

Total:

Name: _____

Instructor: Dwyer

Multiple Choice

1.(5 pts.) If $x + \sin y = xy$ then at the point x = 0 and y = 0, the value of $\frac{dy}{dx}$ is

- (a) 0
- (b) 1
- (c) -1
- (d) 2
- (e) $\frac{1}{2}$

2.(5 pts.) Suppose the derivative of a function y = f(x) is $y' = x^2(x+2)(x-2)$. Then,

- (a) x = -2 is a local minimum
- (b) x = 2 is a local minimum
- (c) x = 2 is a local maximum
- (d) x = 0 is a local minimum
- (e) x = 0 is a local maximum

Name:	

3.(5 pts.) A thin circular plate is heated in the oven. Its radius is increasing at a rate of 1 inch per hour. At what rate is the area of the plate increasing when the radius is 10 inches?

Instructor: Dwyer

- (a) 20π
- (b) 10π
- (c) 2π
- (d) π
- (e) 100π

4.(5 pts.) Let $f(x) = x^2 - 9$ for $0 \le x \le 5$. Then the absolute maximium occurs at x = 1

(a) -3

(b) 0

(c) 3

(d) 5

(e) there is no absolute maximum

Name:

Instructor: Dwyer

5.(5 pts.) The asymptotes of the function

$$f(x) = \frac{x^2 - x - 2}{x^2 + 3x + 2} = \frac{(x+1)(x-2)}{(x+1)(x+2)}$$

are

(a) x = -1 and x = -2

(b) x = -2 and y = 1

(c) x = 2 and y = -1

- (d) x = 1 and x = 2
- (e) x = -1, x = -2, and y = 1

6.(5 pts.) Find dy for $y = \cos(4 - x^2)$

(a) dy = y'

(b) $dy = -\sin(4 - x^2) dx$

(c) $dy = 2x\sin(4-x^2) dx$

- (d) $dy = \frac{dx}{-\sin(4-x^2)}$
- (e) $dy = 2\cos(4-x^2)\sin(4-x^2) dx$

Name:

Instructor: ____ Dwyer

Dwyer

7.(5 pts.) The first iteration of Newton's method for solving $x^3 + x^2 + 1 = 0$ starting at $x_0 = -2$ gives

(a)
$$x_1 = \frac{3}{8}$$

(b)
$$x_1 = -\frac{3}{8}$$

(c)
$$x_1 = -\frac{19}{8}$$

(d)
$$x_1 = -\frac{15}{8}$$

(e)
$$x_1 = -\frac{13}{8}$$

Name:	
Instructor:	Dwyer
Instructor:	Dwyer

Partial Credit 8.(11 pts.) Let $y = f(x) = 5x^{2/5} - 2x$ with $y' = 2(x^{-3/5} - 1)$ and $y'' = -\frac{6}{5}x^{-8/5}$.

Find all critical points

List the intervals where f is increasing / decreasing.

List the intervals where f is concave up / concave down

List all local maxima and local minima, or say so if there are none

List all inflection points, or say so if there are none

Name:	

Instructor: Dwyer

9.(11 pts.) Let $f(x) = \frac{20x}{4+x^2}$. Then, all derivatives of f are defined for all $x \in (-\infty, \infty)$. The following information is assumed to be known - we do not want you to verify it!

$$f'(x) < 0$$
 for $x \in (-\infty, -2)$ and $x \in (2, \infty)$, $f'(x) > 0$ for $x \in (-2, 2)$, $f''(x) < 0$ for $x \in (-\infty, -6)$ and $x \in (0, 6)$, $f''(x) > 0$ for $x \in (-6, 0)$ and $x \in (6, \infty)$.

The only asymptote of f is y = 0.

Evaluate f at critical points and inflection points and graph the function.

Name:		
Instructor:	Dwyer	

10.(11 pts.) Car A and car B are approaching the intersection "C" of two streets intersecting at a right angle. Car A is going South at 45 mph, car B is heading West at 30 mph. We denote the angle $\angle(C, B, A)$ by θ , the distance from C to B by x, and the distance from C to A by y. Then, $\tan \theta = \frac{y}{x}$. At what rate is the angle θ changing when car A and car B are both 1 mile from the intersection?

 θ

Name:	
_	
Instructor:	Dwyer

11.(11 pts.) Let $f(x) = 12 - x^2$ for $x \in [-\sqrt{12}, \sqrt{12}]$. The graph of f and the x-axis bound a region. Find the area of the rectangle R with largest area which can be inscribed in this region. You may use the fact that the rectangle is symmetric to the y-axis.

$$-\sqrt{12}$$
 $\sqrt{12}$

Name	ə:	
Instr	uctor:Dwyer	

12.(11 pts.) About how accurately should you measure a variable t to insure that your calculation of the area of the rectangle with sides a=t, and b=2t is within 5% of its true value?

Name:	
Instructor:	Dwyer

13.(10 pts.) Find the value or values of c guaranteed by the Mean Value Theorem applied to the function $f(x) = x^3$ on the interval [1, 2].

	r Code is	in effect for t	this examina	tion. All wo	rk is to be you
	tors. lasts for o	one hour.			
		ame is on eve ve all 11 pag			come detache
			od Luck!		
PLE	EASE MA	RK YOUR A	ANSWERS V	WITH AN X	, not a circle!
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)
			DO NOT W	VRITE IN T	HIS BOX!
		Tota	al multiple c	hoice:	
				8	
				9	
				10	
				11	
				12	
				13	

Total:

Name: _____

Instructor: Cholak

Multiple Choice

1.(5 pts.) If $x + \sin y = xy$ then at the point x = 0 and y = 0, the value of $\frac{dy}{dx}$ is

- (a) 0
- (b) 1
- (c) -1
- (d) 2
- (e) $\frac{1}{2}$

2.(5 pts.) Suppose the derivative of a function y = f(x) is $y' = x^2(x+2)(x-2)$. Then,

- (a) x = -2 is a local minimum
- (b) x = 2 is a local minimum
- (c) x = 2 is a local maximum
- (d) x = 0 is a local minimum
- (e) x = 0 is a local maximum

Name:	

Instructor: Cholak

3.(5 pts.) A thin circular plate is heated in the oven. Its radius is increasing at a rate of 1 inch per hour. At what rate is the area of the plate increasing when the radius is 10 inches?

- (a) 20π
- (b) 10π
- (c) 2π
- (d) π
- (e) 100π

4.(5 pts.) Let $f(x) = x^2 - 9$ for $0 \le x \le 5$. Then the absolute maximium occurs at x = 1

(a) -3

(b) 0

(c) 3

(d) 5

(e) there is no absolute maximum

Name:

Instructor: Cholak

5.(5 pts.) The asymptotes of the function

$$f(x) = \frac{x^2 - x - 2}{x^2 + 3x + 2} = \frac{(x+1)(x-2)}{(x+1)(x+2)}$$

are

(a) x = -1 and x = -2

(b) x = -2 and y = 1

(c) x = 2 and y = -1

- (d) x = 1 and x = 2
- (e) x = -1, x = -2, and y = 1

6.(5 pts.) Find dy for $y = \cos(4 - x^2)$

(a) dy = y'

(b) $dy = -\sin(4 - x^2) dx$

(c) $dy = 2x\sin(4-x^2) dx$

- (d) $dy = \frac{dx}{-\sin(4-x^2)}$
- (e) $dy = 2\cos(4-x^2)\sin(4-x^2) dx$

Name:

Instructor: Cholak

7.(5 pts.) The first iteration of Newton's method for solving $x^3 + x^2 + 1 = 0$ starting at $x_0 = -2$ gives

(a) $x_1 = \frac{3}{8}$

(b) $x_1 = -\frac{3}{8}$

(c) $x_1 = -\frac{19}{8}$

(d) $x_1 = -\frac{15}{8}$

(e) $x_1 = -\frac{13}{8}$

Ν	Name:	
I	nstructor:	Cholak

Partial Credit 8.(11 pts.) Let
$$y = f(x) = 5x^{2/5} - 2x$$
 with $y' = 2(x^{-3/5} - 1)$ and $y'' = -\frac{6}{5}x^{-8/5}$.

Find all critical points

List the intervals where f is increasing / decreasing.

List the intervals where f is concave up / concave down

List all local maxima and local minima, or say so if there are none

List all inflection points, or say so if there are none

Name:	

Instructor: Cholak

9.(11 pts.) Let $f(x) = \frac{20x}{4+x^2}$. Then, all derivatives of f are defined for all $x \in (-\infty, \infty)$. The following information is assumed to be known - we do not want you to verify it!

$$f'(x) < 0$$
 for $x \in (-\infty, -2)$ and $x \in (2, \infty)$, $f'(x) > 0$ for $x \in (-2, 2)$, $f''(x) < 0$ for $x \in (-\infty, -6)$ and $x \in (0, 6)$, $f''(x) > 0$ for $x \in (-6, 0)$ and $x \in (6, \infty)$.

The only asymptote of f is y = 0.

Evaluate f at critical points and inflection points and graph the function.

Name:	
Instructor:	Cholak

10.(11 pts.) Car A and car B are approaching the intersection "C" of two streets intersecting at a right angle. Car A is going South at 45 mph, car B is heading West at 30 mph. We denote the angle $\angle(C, B, A)$ by θ , the distance from C to B by x, and the distance from C to A by y. Then, $\tan \theta = \frac{y}{x}$. At what rate is the angle θ changing when car A and car B are both 1 mile from the intersection?

 θ

Name:	
T	Cl. 1.1
Instructor:	Cholak

11.(11 pts.) Let $f(x) = 12 - x^2$ for $x \in [-\sqrt{12}, \sqrt{12}]$. The graph of f and the x-axis bound a region. Find the area of the rectangle R with largest area which can be inscribed in this region. You may use the fact that the rectangle is symmetric to the y-axis.

$$-\sqrt{12}$$
 $\sqrt{12}$

Name	e:		
Instru	uctor:Chola	ak	

12.(11 pts.) About how accurately should you measure a variable t to insure that your calculation of the area of the rectangle with sides a=t, and b=2t is within 5% of its true value?

Instructor: Cholak	Name:	
	Instructor:	Cholak

13.(10 pts.) Find the value or values of c guaranteed by the Mean Value Theorem applied to the function $f(x) = x^3$ on the interval [1, 2].

		one hour. ame is on ev	erv page in <i>c</i>	case pages be	come detache
	-	ve all 11 pag			
PLF	CASE MA			WITH AN X	, not a circle!
	(a)	(b)	(c)	(d)	(e)
	(a)	(b)	(c)	(d)	(e)
	(a)	(b)	(c)	(d)	(e)
	(a)	(b)	(c)	(d)	(e)
•	(a)	(b)	(c)	(d)	(e)
	(a)	(b)	(c)	(d)	(e)
•	(a)	(b)	(c)	(d)	(e)
			DO NOT W	VRITE IN T	HIS BOX!
		Tota	al multiple c	hoice:	
				8	
				9	
				10.	
				11.	
				12.	

Total:

Name: _____

Instructor: ____ Taylor

Multiple Choice

1.(5 pts.) If $x + \sin y = xy$ then at the point x = 0 and y = 0, the value of $\frac{dy}{dx}$ is

- (a) 0
- (b) 1
- (c) -1
- (d) 2
- (e) $\frac{1}{2}$

2.(5 pts.) Suppose the derivative of a function y = f(x) is $y' = x^2(x+2)(x-2)$. Then,

- (a) x = -2 is a local minimum
- (b) x = 2 is a local minimum
- (c) x = 2 is a local maximum
- (d) x = 0 is a local minimum
- (e) x = 0 is a local maximum

Name:	
Instructor:	Taylor

3.(5 pts.) A thin circular plate is heated in the oven. Its radius is increasing at a rate of 1 inch per hour. At what rate is the area of the plate increasing when the radius is 10 inches?

- (a) 20π
- (b) 10π
- (c) 2π
- (d) π
- (e) 100π

4.(5 pts.) Let $f(x) = x^2 - 9$ for $0 \le x \le 5$. Then the absolute maximium occurs at x = 1

(a) -3

(b) 0

(c) 3

(d) 5

(e) there is no absolute maximum

Name:

Instructor: ____Taylor

5.(5 pts.) The asymptotes of the function

$$f(x) = \frac{x^2 - x - 2}{x^2 + 3x + 2} = \frac{(x+1)(x-2)}{(x+1)(x+2)}$$

are

(a) x = -1 and x = -2

(b) x = -2 and y = 1

(c) x = 2 and y = -1

- (d) x = 1 and x = 2
- (e) x = -1, x = -2, and y = 1

6.(5 pts.) Find dy for $y = \cos(4 - x^2)$

(a) dy = y'

(b) $dy = -\sin(4 - x^2) dx$

(c) $dy = 2x\sin(4-x^2) dx$

- (d) $dy = \frac{dx}{-\sin(4-x^2)}$
- (e) $dy = 2\cos(4-x^2)\sin(4-x^2) dx$

Name:

Instructor: ____Taylor

7.(5 pts.) The first iteration of Newton's method for solving $x^3 + x^2 + 1 = 0$ starting at $x_0 = -2$ gives

(a)
$$x_1 = \frac{3}{8}$$

(b)
$$x_1 = -\frac{3}{8}$$

(c)
$$x_1 = -\frac{19}{8}$$

(d)
$$x_1 = -\frac{15}{8}$$

(e)
$$x_1 = -\frac{13}{8}$$

Name:	
Instructor:	Taylor

Partial Credit 8.(11 pts.) Let $y = f(x) = 5x^{2/5} - 2x$ with $y' = 2(x^{-3/5} - 1)$ and $y'' = -\frac{6}{5}x^{-8/5}$.

Find all critical points

List the intervals where f is increasing / decreasing.

List the intervals where f is concave up / concave down

List all local maxima and local minima, or say so if there are none

List all inflection points, or say so if there are none

Name:	

Instructor: Taylor

9.(11 pts.) Let $f(x) = \frac{20x}{4+x^2}$. Then, all derivatives of f are defined for all $x \in (-\infty, \infty)$. The following information is assumed to be known - we do not want you to verify it!

$$f'(x) < 0$$
 for $x \in (-\infty, -2)$ and $x \in (2, \infty)$, $f'(x) > 0$ for $x \in (-2, 2)$,
$$f''(x) < 0$$
 for $x \in (-\infty, -6)$ and $x \in (0, 6)$,
$$f''(x) > 0$$
 for $x \in (-6, 0)$ and $x \in (6, \infty)$.

The only asymptote of f is y = 0.

Evaluate f at critical points and inflection points and graph the function.

Name:			
Instructor:	Taylor		

10.(11 pts.) Car A and car B are approaching the intersection "C" of two streets intersecting at a right angle. Car A is going South at 45 mph, car B is heading West at 30 mph. We denote the angle $\angle(C, B, A)$ by θ , the distance from C to B by x, and the distance from C to A by y. Then, $\tan \theta = \frac{y}{x}$. At what rate is the angle θ changing when car A and car B are both 1 mile from the intersection?

 θ

Name:			
Instructor	Taylor		

11.(11 pts.) Let $f(x) = 12 - x^2$ for $x \in [-\sqrt{12}, \sqrt{12}]$. The graph of f and the x-axis bound a region. Find the area of the rectangle R with largest area which can be inscribed in this region. You may use the fact that the rectangle is symmetric to the y-axis.

$$-\sqrt{12}$$
 $\sqrt{12}$

Name:	
Instructor:	Taylor

12.(11 pts.) About how accurately should you measure a variable t to insure that your calculation of the area of the rectangle with sides a=t, and b=2t is within 5% of its true value?

Nar	ne:		
Inst	ructor:	Taylor	

13.(10 pts.) Find the value or values of c guaranteed by the Mean Value Theorem applied to the function $f(x) = x^3$ on the interval [1, 2].

e th	-	one hour. ame is on evo ve all 11 pag			ecome detach
			od Luck!		
'LE	EASE MA	RK YOUR A	ANSWERS V	WITH AN X	, not a circle
•	(a)	(b)	(c)	(d)	(e)
	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
l.	(a)	(b)	(c)	(d)	(e)
	(a)	(b)	(c)	(d)	(e)
5 .	(a)	(b)	(c)	(d)	(e)
•	(a)	(b)	(c)	(d)	(e)
			DO NOT W	RITE IN T	HIS BOX!
		Tota	al multiple c	noice:	
				8	
				9	
				10	
				11	
				12	
				13.	

Total:

Name: _____

Instructor: Wong

Multiple Choice

1.(5 pts.) If $x + \sin y = xy$ then at the point x = 0 and y = 0, the value of $\frac{dy}{dx}$ is

- (a) 0
- (b) 1
- (c) -1
- (d) 2
- (e) $\frac{1}{2}$

2.(5 pts.) Suppose the derivative of a function y = f(x) is $y' = x^2(x+2)(x-2)$. Then,

- (a) x = -2 is a local minimum
- (b) x = 2 is a local minimum
- (c) x = 2 is a local maximum
- (d) x = 0 is a local minimum
- (e) x = 0 is a local maximum

Name:		
Instructor:	Wong	

3.(5 pts.) A thin circular plate is heated in the oven. Its radius is increasing at a rate of 1 inch per hour. At what rate is the area of the plate increasing when the radius is 10 inches?

- (a) 20π
- (b) 10π
- (c) 2π
- (d) τ
- (e) 100π

4.(5 pts.) Let $f(x) = x^2 - 9$ for $0 \le x \le 5$. Then the absolute maximium occurs at x = 1

(a) -3

(b) 0

(c) 3

(d) 5

(e) there is no absolute maximum

Name:

Instructor: Wong

5.(5 pts.) The asymptotes of the function

$$f(x) = \frac{x^2 - x - 2}{x^2 + 3x + 2} = \frac{(x+1)(x-2)}{(x+1)(x+2)}$$

are

(a) x = -1 and x = -2

(b) x = -2 and y = 1

(c) x = 2 and y = -1

- (d) x = 1 and x = 2
- (e) x = -1, x = -2, and y = 1

6.(5 pts.) Find dy for $y = \cos(4 - x^2)$

(a) dy = y'

(b) $dy = -\sin(4 - x^2) dx$

(c) $dy = 2x\sin(4-x^2) dx$

- (d) $dy = \frac{dx}{-\sin(4-x^2)}$
- (e) $dy = 2\cos(4-x^2)\sin(4-x^2) dx$

Name:

Instructor: Wong

7.(5 pts.) The first iteration of Newton's method for solving $x^3 + x^2 + 1 = 0$ starting at $x_0 = -2$ gives

(a) $x_1 = \frac{3}{8}$

(b) $x_1 = -\frac{3}{8}$

(c) $x_1 = -\frac{19}{8}$

(d) $x_1 = -\frac{15}{8}$

(e) $x_1 = -\frac{13}{8}$

]	Name:	
	Instructor:	Wong

Partial Credit 8.(11 pts.) Let $y = f(x) = 5x^{2/5} - 2x$ with $y' = 2(x^{-3/5} - 1)$ and $y'' = -\frac{6}{5}x^{-8/5}$.

Find all critical points

List the intervals where f is increasing / decreasing.

List the intervals where f is concave up / concave down

List all local maxima and local minima, or say so if there are none

List all inflection points, or say so if there are none

Name:		

Instructor: Wong

9.(11 pts.) Let $f(x) = \frac{20x}{4+x^2}$. Then, all derivatives of f are defined for all $x \in (-\infty, \infty)$. The following information is assumed to be known - we do not want you to verify it!

$$f'(x) < 0$$
 for $x \in (-\infty, -2)$ and $x \in (2, \infty)$, $f'(x) > 0$ for $x \in (-2, 2)$, $f''(x) < 0$ for $x \in (-\infty, -6)$ and $x \in (0, 6)$, $f''(x) > 0$ for $x \in (-6, 0)$ and $x \in (6, \infty)$.

The only asymptote of f is y = 0.

Evaluate f at critical points and inflection points and graph the function.

Name:			
Instructor:	Wong		

10.(11 pts.) Car A and car B are approaching the intersection "C" of two streets intersecting at a right angle. Car A is going South at 45 mph, car B is heading West at 30 mph. We denote the angle $\angle(C, B, A)$ by θ , the distance from C to B by x, and the distance from C to A by y. Then, $\tan \theta = \frac{y}{x}$. At what rate is the angle θ changing when car A and car B are both 1 mile from the intersection?

 θ

Name:		
Instructor:	Wong	

11.(11 pts.) Let $f(x) = 12 - x^2$ for $x \in [-\sqrt{12}, \sqrt{12}]$. The graph of f and the x-axis bound a region. Find the area of the rectangle R with largest area which can be inscribed in this region. You may use the fact that the rectangle is symmetric to the y-axis.

$$-\sqrt{12}$$
 $\sqrt{12}$

Name:	
Instructor:	Wong

12.(11 pts.) About how accurately should you measure a variable t to insure that your calculation of the area of the rectangle with sides a=t, and b=2t is within 5% of its true value?

Nan	ne:		
Inst	ructor:	Wong	

13.(10 pts.) Find the value or values of c guaranteed by the Mean Value Theorem applied to the function $f(x) = x^3$ on the interval [1, 2].

Name:		
Instructor:	Cao	
Exam II etober 26, 1999		

- Oc
- The Honor Code is in effect for this examination. All work is to be your own. • No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!

PLE	EASE MA	ARK YOUR A	NSWERS V	WITH AN X	, not a circle!
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)

DO NOT WRITE I	N THIS BOX!	
Total multiple choice:		
8.		
9.		
10.		
11.		
12.		
13.		
Total:		

Name: _____

Instructor: Cao

Multiple Choice

1.(5 pts.) If $x + \sin y = xy$ then at the point x = 0 and y = 0, the value of $\frac{dy}{dx}$ is

- (a) 0
- (b) 1
- (c) -1
- (d) 2
- (e) $\frac{1}{2}$

2.(5 pts.) Suppose the derivative of a function y = f(x) is $y' = x^2(x+2)(x-2)$. Then,

- (a) x = -2 is a local minimum
- (b) x = 2 is a local minimum
- (c) x = 2 is a local maximum
- (d) x = 0 is a local minimum
- (e) x = 0 is a local maximum

Name:	
Instructor:	Cao

eated in the oven. Its radius is increasing at a rate of

3.(5 pts.) A thin circular plate is heated in the oven. Its radius is increasing at a rate of 1 inch per hour. At what rate is the area of the plate increasing when the radius is 10 inches?

- (a) 20π
- (b) 10π
- (c) 2π
- (d) π
- (e) 100π

4.(5 pts.) Let $f(x) = x^2 - 9$ for $0 \le x \le 5$. Then the absolute maximium occurs at x = 1

(a) -3

(b) 0

(c) 3

(d) 5

(e) there is no absolute maximum

Name:

Instructor: Cao

5.(5 pts.) The asymptotes of the function

$$f(x) = \frac{x^2 - x - 2}{x^2 + 3x + 2} = \frac{(x+1)(x-2)}{(x+1)(x+2)}$$

are

(a) x = -1 and x = -2

(b) x = -2 and y = 1

(c) x = 2 and y = -1

- (d) x = 1 and x = 2
- (e) x = -1, x = -2, and y = 1

6.(5 pts.) Find dy for $y = \cos(4 - x^2)$

(a) dy = y'

(b) $dy = -\sin(4 - x^2) dx$

(c) $dy = 2x\sin(4-x^2) dx$

- (d) $dy = \frac{dx}{-\sin(4-x^2)}$
- (e) $dy = 2\cos(4-x^2)\sin(4-x^2) dx$

Name:

Instructor: Cao

7.(5 pts.) The first iteration of Newton's method for solving $x^3 + x^2 + 1 = 0$ starting at $x_0 = -2$ gives

(a)
$$x_1 = \frac{3}{8}$$

(b)
$$x_1 = -\frac{3}{8}$$

(c)
$$x_1 = -\frac{19}{8}$$

(d)
$$x_1 = -\frac{15}{8}$$

(e)
$$x_1 = -\frac{13}{8}$$

Name:	
Instructor:	Cao

Partial Credit 8.(11 pts.) Let $y = f(x) = 5x^{2/5} - 2x$ with $y' = 2(x^{-3/5} - 1)$ and $y'' = -\frac{6}{5}x^{-8/5}$.

Find all critical points

List the intervals where f is increasing / decreasing.

List the intervals where f is concave up / concave down

List all local maxima and local minima, or say so if there are none

List all inflection points, or say so if there are none

Name:	
Instructor: Cac	

9.(11 pts.) Let $f(x) = \frac{20x}{4+x^2}$. Then, all derivatives of f are defined for all $x \in (-\infty, \infty)$. The following information is assumed to be known - we do not want you to verify it!

$$f'(x)<0$$
 for $x\in(-\infty,-2)$ and $x\in(2,\infty),$ $f'(x)>0$ for $x\in(-2,2),$
$$f''(x)<0 \text{ for } x\in(-\infty,-6) \text{ and } x\in(0,6),$$

$$f''(x)>0 \text{ for } x\in(-6,0) \text{ and } x\in(6,\infty).$$
 The only asymptote of f is $y=0.$

Evaluate f at critical points and inflection points and graph the function.

Name:		_
Instructor:	Cao	

10.(11 pts.) Car A and car B are approaching the intersection "C" of two streets intersecting at a right angle. Car A is going South at 45 mph, car B is heading West at 30 mph. We denote the angle $\angle(C, B, A)$ by θ , the distance from C to B by x, and the distance from C to A by y. Then, $\tan \theta = \frac{y}{x}$. At what rate is the angle θ changing when car A and car B are both 1 mile from the intersection?

 θ

Name:			
Instructor:	Cao		

11.(11 pts.) Let $f(x) = 12 - x^2$ for $x \in [-\sqrt{12}, \sqrt{12}]$. The graph of f and the x-axis bound a region. Find the area of the rectangle R with largest area which can be inscribed in this region. You may use the fact that the rectangle is symmetric to the y-axis.

$$-\sqrt{12}$$
 $\sqrt{12}$

Name:	
Instructor:	Cao

12.(11 pts.) About how accurately should you measure a variable t to insure that your calculation of the area of the rectangle with sides a=t, and b=2t is within 5% of its true value?

Name:			
Instruc	etor:C	Cao	

13.(10 pts.) Find the value or values of c guaranteed by the Mean Value Theorem applied to the function $f(x) = x^3$ on the interval [1, 2].

	-	ve all 11 pag		case pages be t.	come detache
			ood Luck!		
					, not a circle!
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)
			DO NOT V	VRITE IN T	HIS BOX!
		Tota	al multiple c	hoice:	
				8	
				9	
				10.	
				11	
				12.	

13.

Total:

Name: _____

Instructor: Jarre

Multiple Choice

1.(5 pts.) If $x + \sin y = xy$ then at the point x = 0 and y = 0, the value of $\frac{dy}{dx}$ is

- (a) 0
- (b) 1
- (c) -1
- (d) 2
- (e) $\frac{1}{2}$

2.(5 pts.) Suppose the derivative of a function y = f(x) is $y' = x^2(x+2)(x-2)$. Then,

- (a) x = -2 is a local minimum
- (b) x = 2 is a local minimum
- (c) x = 2 is a local maximum
- (d) x = 0 is a local minimum
- (e) x = 0 is a local maximum

Name:	

Instructor: ____Jarre

3.(5 pts.) A thin circular plate is heated in the oven. Its radius is increasing at a rate of 1 inch per hour. At what rate is the area of the plate increasing when the radius is 10 inches?

- (a) 20π
- (b) 10π
- (c) 2π
- (d) τ
- (e) 100π

4.(5 pts.) Let $f(x) = x^2 - 9$ for $0 \le x \le 5$. Then the absolute maximium occurs at x = x = 1

(a) -3

(b) 0

(c) 3

(d) 5

(e) there is no absolute maximum

Name:

Instructor: ____Jarre

5.(5 pts.) The asymptotes of the function

$$f(x) = \frac{x^2 - x - 2}{x^2 + 3x + 2} = \frac{(x+1)(x-2)}{(x+1)(x+2)}$$

are

(a) x = -1 and x = -2

(b) x = -2 and y = 1

(c) x = 2 and y = -1

- (d) x = 1 and x = 2
- (e) x = -1, x = -2, and y = 1

6.(5 pts.) Find dy for $y = \cos(4 - x^2)$

(a) dy = y'

(b) $dy = -\sin(4 - x^2) dx$

(c) $dy = 2x\sin(4-x^2) dx$

- (d) $dy = \frac{dx}{-\sin(4-x^2)}$
- (e) $dy = 2\cos(4-x^2)\sin(4-x^2) dx$

Name:

Instructor: ____Jarre

7.(5 pts.) The first iteration of Newton's method for solving $x^3 + x^2 + 1 = 0$ starting at $x_0 = -2$ gives

(a) $x_1 = \frac{3}{8}$

(b) $x_1 = -\frac{3}{8}$

(c) $x_1 = -\frac{19}{8}$

(d) $x_1 = -\frac{15}{8}$

(e) $x_1 = -\frac{13}{8}$

Name:	
Instructor:	Jarre

Partial Credit 8.(11 pts.) Let $y = f(x) = 5x^{2/5} - 2x$ with $y' = 2(x^{-3/5} - 1)$ and $y'' = -\frac{6}{5}x^{-8/5}$.

Find all critical points

List the intervals where f is increasing / decreasing.

List the intervals where f is concave up / concave down

List all local maxima and local minima, or say so if there are none

List all inflection points, or say so if there are none

Name:	
	7
Instructor:	Jarre

9.(11 pts.) Let $f(x) = \frac{20x}{4+x^2}$. Then, all derivatives of f are defined for all $x \in (-\infty, \infty)$. The following information is assumed to be known - we do not want you to verify it!

$$f'(x)<0$$
 for $x\in(-\infty,-2)$ and $x\in(2,\infty),$ $f'(x)>0$ for $x\in(-2,2),$
$$f''(x)<0 \text{ for } x\in(-\infty,-6) \text{ and } x\in(0,6),$$

$$f''(x)>0 \text{ for } x\in(-6,0) \text{ and } x\in(6,\infty).$$
 The only asymptote of f is $y=0$.

Evaluate f at critical points and inflection points and graph the function.

Name:		_
Instructor:	Jarre	

10.(11 pts.) Car A and car B are approaching the intersection "C" of two streets intersecting at a right angle. Car A is going South at 45 mph, car B is heading West at 30 mph. We denote the angle $\angle(C, B, A)$ by θ , the distance from C to B by x, and the distance from C to A by y. Then, $\tan \theta = \frac{y}{x}$. At what rate is the angle θ changing when car A and car B are both 1 mile from the intersection?

 θ

Name:	
Instructor:	Jarre
mstructor.	Jarre

11.(11 pts.) Let $f(x) = 12 - x^2$ for $x \in [-\sqrt{12}, \sqrt{12}]$. The graph of f and the x-axis bound a region. Find the area of the rectangle R with largest area which can be inscribed in this region. You may use the fact that the rectangle is symmetric to the y-axis.

$$-\sqrt{12}$$
 $\sqrt{12}$

Name:	
Instructor:	Jarre

12.(11 pts.) About how accurately should you measure a variable t to insure that your calculation of the area of the rectangle with sides a=t, and b=2t is within 5% of its true value?

Ι	Name:		
I	$Instructor: _$	Jarre	-

13.(10 pts.) Find the value or values of c guaranteed by the Mean Value Theorem applied to the function $f(x) = x^3$ on the interval [1, 2].

am e th		ame is on eve			ecome detache
e tn	iat you na	ve all 11 pag Go	es of the tes ood Luck!	τ.	
PLE	EASE MA	RK YOUR A	ANSWERS V	WITH AN X	, not a circle!
	(a)	(b)	(c)	(d)	(e)
) .	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
ļ.	(a)	(b)	(c)	(d)	(e)
).	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
.	(a)	(b)	(c)	(d)	(e)
			DO NOT W	VRITE IN T	HIS BOX!
		Tota	al multiple c	hoice:	
				8	
				9	
				10.	
				11.	
				12	
				13.	

Total:

Name: _____

Instructor: Nollet

Multiple Choice

1.(5 pts.) If $x + \sin y = xy$ then at the point x = 0 and y = 0, the value of $\frac{dy}{dx}$ is

- (a) 0
- (b) 1
- (c) -1
- (d) 2
- (e) $\frac{1}{2}$

2.(5 pts.) Suppose the derivative of a function y = f(x) is $y' = x^2(x+2)(x-2)$. Then,

- (a) x = -2 is a local minimum
- (b) x = 2 is a local minimum
- (c) x = 2 is a local maximum
- (d) x = 0 is a local minimum
- (e) x = 0 is a local maximum

Name:	

Instructor: Nollet

3.(5 pts.) A thin circular plate is heated in the oven. Its radius is increasing at a rate of 1 inch per hour. At what rate is the area of the plate increasing when the radius is 10 inches?

- (a) 20π
- (b) 10π
- (c) 2π
- (d) τ
- (e) 100π

4.(5 pts.) Let $f(x) = x^2 - 9$ for $0 \le x \le 5$. Then the absolute maximium occurs at x = 1

(a) -3

(b) 0

(c) 3

(d) 5

(e) there is no absolute maximum

Name:

Instructor: Nollet

5.(5 pts.) The asymptotes of the function

$$f(x) = \frac{x^2 - x - 2}{x^2 + 3x + 2} = \frac{(x+1)(x-2)}{(x+1)(x+2)}$$

are

(a) x = -1 and x = -2

(b) x = -2 and y = 1

(c) x = 2 and y = -1

- (d) x = 1 and x = 2
- (e) x = -1, x = -2, and y = 1

6.(5 pts.) Find dy for $y = \cos(4 - x^2)$

(a) dy = y'

(b) $dy = -\sin(4 - x^2) dx$

(c) $dy = 2x\sin(4-x^2) dx$

- (d) $dy = \frac{dx}{-\sin(4-x^2)}$
- (e) $dy = 2\cos(4-x^2)\sin(4-x^2) dx$

Name:

Instructor: Nollet

7.(5 pts.) The first iteration of Newton's method for solving $x^3 + x^2 + 1 = 0$ starting at $x_0 = -2$ gives

(a) $x_1 = \frac{3}{8}$

(b) $x_1 = -\frac{3}{8}$

(c) $x_1 = -\frac{19}{8}$

(d) $x_1 = -\frac{15}{8}$

(e) $x_1 = -\frac{13}{8}$

Name:	
Instructor	: Nollet
Instructor	: Nollet

Partial Credit 8.(11 pts.) Let $y = f(x) = 5x^{2/5} - 2x$ with $y' = 2(x^{-3/5} - 1)$ and $y'' = -\frac{6}{5}x^{-8/5}$.

Find all critical points

List the intervals where f is increasing / decreasing.

List the intervals where f is concave up / concave down

List all local maxima and local minima, or say so if there are none

List all inflection points, or say so if there are none

Name:	

Instructor: Nollet

9.(11 pts.) Let $f(x) = \frac{20x}{4+x^2}$. Then, all derivatives of f are defined for all $x \in (-\infty, \infty)$. The following information is assumed to be known - we do not want you to verify it!

$$f'(x) < 0$$
 for $x \in (-\infty, -2)$ and $x \in (2, \infty)$, $f'(x) > 0$ for $x \in (-2, 2)$, $f''(x) < 0$ for $x \in (-\infty, -6)$ and $x \in (0, 6)$, $f''(x) > 0$ for $x \in (-6, 0)$ and $x \in (6, \infty)$.

The only asymptote of f is y = 0.

Evaluate f at critical points and inflection points and graph the function.

Name:	
Instructor:	Nollet

10.(11 pts.) Car A and car B are approaching the intersection "C" of two streets intersecting at a right angle. Car A is going South at 45 mph, car B is heading West at 30 mph. We denote the angle $\angle(C, B, A)$ by θ , the distance from C to B by x, and the distance from C to A by y. Then, $\tan \theta = \frac{y}{x}$. At what rate is the angle θ changing when car A and car B are both 1 mile from the intersection?

 θ

Name:			
Instructor	Nollet		

11.(11 pts.) Let $f(x) = 12 - x^2$ for $x \in [-\sqrt{12}, \sqrt{12}]$. The graph of f and the x-axis bound a region. Find the area of the rectangle R with largest area which can be inscribed in this region. You may use the fact that the rectangle is symmetric to the y-axis.

$$-\sqrt{12}$$
 $\sqrt{12}$

N	Vame:		
I	nstructor:	Nollet	_

12.(11 pts.) About how accurately should you measure a variable t to insure that your calculation of the area of the rectangle with sides a=t, and b=2t is within 5% of its true value?

Nan	me:	
Inst	tructor: Nollet	

13.(10 pts.) Find the value or values of c guaranteed by the Mean Value Theorem applied to the function $f(x) = x^3$ on the interval [1, 2].

		N	[ame:		
		Ir	nstructo:	Bullwinkle	
			Exam II ber 26, 1999		
cula am e th	tors. lasts for a at your n	one hour. ame is on ev ve all 11 pag	ery page in o	case pages be	rk is to be you
DI E	ACE MA			WITH AN Y	, not a circle!
1.	(a)	(b)	(•)	(d)	(e)
2.	(a)	(•)	(c)	(d)	(e)
3.	(●)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(ullet)	(e)
5.	(a)	(ullet)	(c)	(d)	(e)
6.	(a)	(b)	(ullet)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(•)
			DO NOT V	VRITE IN T	HIS BOX!
		Tota	al multiple c	hoice:	
				8	
				9	
				10	
				11	
				12	
				13	

Total: