Name: \qquad
Instructor: __Dyer

Exam II

October 26, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

1. (a)
(b)
(c)
(d)
(e)
2. (a)
(b)
(c)
(d)
(e)
3. (a)
(b)
(c)
(d)
(e)
4. (a)
(b)
(c)
(d)
(e)
5. (a)
(b)
(c)
(d)
(e)
6. (a)
(b)
(c)
(d)
(e)
7. (a)
(b)
(c)
(d)
(e)

DO NOT WRITE IN THIS BOX!

Total multiple choice: \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad
Total:

Name: \qquad
Instructor: \qquad

Multiple Choice

1. (5 pts.) If $x+\sin y=x y$ then at the point $x=0$ and $y=0$, the value of $\frac{d y}{d x}$ is
(a) 0
(b) 1
(c) -1
(d) 2
(e) $\frac{1}{2}$
2. (5 pts.) Suppose the derivative of a function $y=f(x)$ is $y^{\prime}=x^{2}(x+2)(x-2)$. Then,
(a) $x=-2$ is a local minimum
(b) $\quad x=2$ is a local minimum
(c) $\quad x=2$ is a local maximum
(d) $\quad x=0$ is a local minimum
(e) $\quad x=0$ is a local maximum

Name:
Instructor: Dwyer
3. (5 pts.) A thin circular plate is heated in the oven. Its radius is increasing at a rate of 1 inch per hour. At what rate is the area of the plate increasing when the radius is 10 inches?
(a) 20π
(b) 10π
(c) 2π
(d) π
(e) 100π
4. (5 pts.) Let $f(x)=x^{2}-9$ for $0 \leq x \leq 5$. Then the absolute maximium occurs at $x=$
(a) -3
(b) 0
(c) 3
(d) 5
(e) there is no absolute maximum

Name: \qquad
Instructor: \qquad Dwyer
5. (5 pts.) The asymptotes of the function

$$
f(x)=\frac{x^{2}-x-2}{x^{2}+3 x+2}=\frac{(x+1)(x-2)}{(x+1)(x+2)}
$$

are
(a) $\quad x=-1$ and $x=-2$
(b) $\quad x=-2$ and $y=1$
(c) $\quad x=2$ and $y=-1$
(d) $\quad x=1$ and $x=2$
(e) $\quad x=-1, x=-2$, and $y=1$
6. (5 pts.) Find $d y$ for $y=\cos \left(4-x^{2}\right)$
(a) $d y=y^{\prime}$
(b) $d y=-\sin \left(4-x^{2}\right) d x$
(c) $d y=2 x \sin \left(4-x^{2}\right) d x$
(d) $\quad d y=\frac{d x}{-\sin \left(4-x^{2}\right)}$
(e) $\quad d y=2 \cos \left(4-x^{2}\right) \sin \left(4-x^{2}\right) d x$

Name:
Instructor: __Dwer
7. (5 pts.) The first iteration of Newton's method for solving $x^{3}+x^{2}+1=0$ starting at $x_{0}=-2$ gives
(a) $x_{1}=\frac{3}{8}$
(b) $\quad x_{1}=-\frac{3}{8}$
(c) $x_{1}=-\frac{19}{8}$
(d) $x_{1}=-\frac{15}{8}$
(e) $x_{1}=-\frac{13}{8}$

Name:
Instructor: D__ Dwyer

Partial Credit

8. (11 pts.) Let $y=f(x)=5 x^{2 / 5}-2 x$ with $y^{\prime}=2\left(x^{-3 / 5}-1\right)$ and $y^{\prime \prime}=-\frac{6}{5} x^{-8 / 5}$.

Find all critical points
List the intervals where f is increasing / decreasing.
List the intervals where f is concave up / concave down
List all local maxima and local minima, or say so if there are none
List all inflection points, or say so if there are none

Name:
Instructor: __ Dwyer
9. (11 pts.) Let $f(x)=\frac{20 x}{4+x^{2}}$. Then, all derivatives of f are defined for all $x \in(-\infty, \infty)$. The following information is assumed to be known - we do not want you to verify it!

$$
\begin{gathered}
f^{\prime}(x)<0 \text { for } x \in(-\infty,-2) \text { and } x \in(2, \infty), \quad f^{\prime}(x)>0 \text { for } x \in(-2,2), \\
\\
f^{\prime \prime}(x)<0 \text { for } x \in(-\infty,-6) \text { and } x \in(0,6), \\
\\
f^{\prime \prime}(x)>0 \text { for } x \in(-6,0) \text { and } x \in(6, \infty) .
\end{gathered}
$$

The only asymptote of f is $y=0$.
Evaluate f at critical points and inflection points and graph the function.

Name:
Instructor: Dwyer
10. (11 pts.) Car A and car B are approaching the intersection " C " of two streets intersecting at a right angle. Car A is going South at 45 mph , car B is heading West at 30 mph . We denote the angle $\angle(C, B, A)$ by θ, the distance from C to B by x, and the distance from C to A by y. Then, $\tan \theta=\frac{y}{x}$. At what rate is the angle θ changing when car A and car B are both 1 mile from the intersection?

Name:
Instructor: __Dwer
11. (11 pts.) Let $f(x)=12-x^{2}$ for $x \in[-\sqrt{12}, \sqrt{12}]$. The graph of f and the x-axis bound a region. Find the area of the rectangle R with largest area which can be inscribed in this region. You may use the fact that the rectangle is symmetric to the y-axis.
$-\sqrt{12}$
$\sqrt{12}$

Name:
Instructor: __ Dwyer
12.(11 pts.) About how accurately should you measure a variable t to insure that your calculation of the area of the rectangle with sides $a=t$, and $b=2 t$ is within 5% of its true value?

Name:
Instructor: __ Dwyer
13.(10 pts.) Find the value or values of c guaranteed by the Mean Value Theorem applied to the function $f(x)=x^{3}$ on the interval $[1,2]$.

Name: \qquad
Instructor: Cholak

Exam II

October 26, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

1. (a)
(b)
(c)
(d)
(e)
2. (a)
(b)
(c)
(d)
(e)
3. (a)
(b)
(c)
(d)
(e)
4. (a)
(b)
(c)
(d)
(e)
5. (a)
(b)
(c)
(d)
(e)
6. (a)
(b)
(c)
(d)
(e)
7. (a)
(b)
(c)
(d)
(e)

DO NOT WRITE IN THIS BOX!

Total multiple choice: \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad
Total:

Name: \qquad
Instructor: \qquad Cholak

Multiple Choice

1. (5 pts.) If $x+\sin y=x y$ then at the point $x=0$ and $y=0$, the value of $\frac{d y}{d x}$ is
(a) 0
(b) 1
(c) -1
(d) 2
(e) $\frac{1}{2}$
2. (5 pts.) Suppose the derivative of a function $y=f(x)$ is $y^{\prime}=x^{2}(x+2)(x-2)$. Then,
(a) $x=-2$ is a local minimum
(b) $\quad x=2$ is a local minimum
(c) $\quad x=2$ is a local maximum
(d) $\quad x=0$ is a local minimum
(e) $\quad x=0$ is a local maximum

Name:
Instructor: Cholak
3. (5 pts.) A thin circular plate is heated in the oven. Its radius is increasing at a rate of 1 inch per hour. At what rate is the area of the plate increasing when the radius is 10 inches?
(a) 20π
(b) 10π
(c) 2π
(d) π
(e) 100π
4. (5 pts.) Let $f(x)=x^{2}-9$ for $0 \leq x \leq 5$. Then the absolute maximium occurs at $x=$
(a) -3
(b) 0
(c) 3
(d) 5
(e) there is no absolute maximum

Name: \qquad
Instructor: \qquad Cholak
5. (5 pts.) The asymptotes of the function

$$
f(x)=\frac{x^{2}-x-2}{x^{2}+3 x+2}=\frac{(x+1)(x-2)}{(x+1)(x+2)}
$$

are
(a) $\quad x=-1$ and $x=-2$
(b) $\quad x=-2$ and $y=1$
(c) $\quad x=2$ and $y=-1$
(d) $\quad x=1$ and $x=2$
(e) $\quad x=-1, x=-2$, and $y=1$
6. (5 pts.) Find $d y$ for $y=\cos \left(4-x^{2}\right)$
(a) $d y=y^{\prime}$
(b) $d y=-\sin \left(4-x^{2}\right) d x$
(c) $d y=2 x \sin \left(4-x^{2}\right) d x$
(d) $\quad d y=\frac{d x}{-\sin \left(4-x^{2}\right)}$
(e) $d y=2 \cos \left(4-x^{2}\right) \sin \left(4-x^{2}\right) d x$

Name:
Instructor: Cholak
7.(5 pts.) The first iteration of Newton's method for solving $x^{3}+x^{2}+1=0$ starting at $x_{0}=-2$ gives
(a) $x_{1}=\frac{3}{8}$
(b) $\quad x_{1}=-\frac{3}{8}$
(c) $x_{1}=-\frac{19}{8}$
(d) $x_{1}=-\frac{15}{8}$
(e) $x_{1}=-\frac{13}{8}$

Name:
Instructor: Cholak

Partial Credit

8. (11 pts.) Let $y=f(x)=5 x^{2 / 5}-2 x$ with $y^{\prime}=2\left(x^{-3 / 5}-1\right)$ and $y^{\prime \prime}=-\frac{6}{5} x^{-8 / 5}$.

Find all critical points
List the intervals where f is increasing / decreasing.
List the intervals where f is concave up / concave down
List all local maxima and local minima, or say so if there are none
List all inflection points, or say so if there are none

Name:
Instructor: Cholak
9. (11 pts.) Let $f(x)=\frac{20 x}{4+x^{2}}$. Then, all derivatives of f are defined for all $x \in(-\infty, \infty)$. The following information is assumed to be known - we do not want you to verify it!

$$
\begin{gathered}
f^{\prime}(x)<0 \text { for } x \in(-\infty,-2) \text { and } x \in(2, \infty), \quad f^{\prime}(x)>0 \text { for } x \in(-2,2), \\
\\
f^{\prime \prime}(x)<0 \text { for } x \in(-\infty,-6) \text { and } x \in(0,6), \\
\\
f^{\prime \prime}(x)>0 \text { for } x \in(-6,0) \text { and } x \in(6, \infty) .
\end{gathered}
$$

The only asymptote of f is $y=0$.
Evaluate f at critical points and inflection points and graph the function.

Name:
Instructor: Cholak
10.(11 pts.) Car A and car B are approaching the intersection " C " of two streets intersecting at a right angle. Car A is going South at 45 mph , car B is heading West at 30 mph . We denote the angle $\angle(C, B, A)$ by θ, the distance from C to B by x, and the distance from C to A by y. Then, $\tan \theta=\frac{y}{x}$. At what rate is the angle θ changing when car A and car B are both 1 mile from the intersection?

Name:
Instructor: Cholak
11. (11 pts.) Let $f(x)=12-x^{2}$ for $x \in[-\sqrt{12}, \sqrt{12}]$. The graph of f and the x-axis bound a region. Find the area of the rectangle R with largest area which can be inscribed in this region. You may use the fact that the rectangle is symmetric to the y-axis.
$-\sqrt{12}$
$\sqrt{12}$

Name:
Instructor: Cholak
12.(11 pts.) About how accurately should you measure a variable t to insure that your calculation of the area of the rectangle with sides $a=t$, and $b=2 t$ is within 5% of its true value?

Name:
Instructor: Cholak
13.(10 pts.) Find the value or values of c guaranteed by the Mean Value Theorem applied to the function $f(x)=x^{3}$ on the interval $[1,2]$.

Name: \qquad
Instructor: _Taylor

Exam II

October 26, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

1. (a)
(b)
(c)
(d)
(e)
2. (a)
(b)
(c)
(d)
(e)
3. (a)
(b)
(c)
(d)
(e)
4. (a)
(b)
(c)
(d)
(e)
5. (a)
(b)
(c)
(d)
(e)
6. (a)
(b)
(c)
(d)
(e)
7. (a)
(b)
(c)
(d)
(e)

DO NOT WRITE IN THIS BOX!

Total multiple choice: \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad
Total:

Name: \qquad
Instructor: Taylor

Multiple Choice

1. (5 pts.) If $x+\sin y=x y$ then at the point $x=0$ and $y=0$, the value of $\frac{d y}{d x}$ is
(a) 0
(b) 1
(c) -1
(d) 2
(e) $\frac{1}{2}$
2. (5 pts.) Suppose the derivative of a function $y=f(x)$ is $y^{\prime}=x^{2}(x+2)(x-2)$. Then,
(a) $x=-2$ is a local minimum
(b) $\quad x=2$ is a local minimum
(c) $\quad x=2$ is a local maximum
(d) $\quad x=0$ is a local minimum
(e) $\quad x=0$ is a local maximum

Name: \qquad
Instructor: Taylor
3. (5 pts.) A thin circular plate is heated in the oven. Its radius is increasing at a rate of 1 inch per hour. At what rate is the area of the plate increasing when the radius is 10 inches?
(a) 20π
(b) 10π
(c) 2π
(d) π
(e) 100π
4. (5 pts.) Let $f(x)=x^{2}-9$ for $0 \leq x \leq 5$. Then the absolute maximium occurs at $x=$
(a) -3
(b) 0
(c) 3
(d) 5
(e) there is no absolute maximum

Name: \qquad
Instructor: \qquad Taylor
5. (5 pts.) The asymptotes of the function

$$
f(x)=\frac{x^{2}-x-2}{x^{2}+3 x+2}=\frac{(x+1)(x-2)}{(x+1)(x+2)}
$$

are
(a) $\quad x=-1$ and $x=-2$
(b) $\quad x=-2$ and $y=1$
(c) $\quad x=2$ and $y=-1$
(d) $\quad x=1$ and $x=2$
(e) $\quad x=-1, x=-2$, and $y=1$
6. (5 pts.) Find $d y$ for $y=\cos \left(4-x^{2}\right)$
(a) $d y=y^{\prime}$
(b) $d y=-\sin \left(4-x^{2}\right) d x$
(c) $d y=2 x \sin \left(4-x^{2}\right) d x$
(d) $\quad d y=\frac{d x}{-\sin \left(4-x^{2}\right)}$
(e) $\quad d y=2 \cos \left(4-x^{2}\right) \sin \left(4-x^{2}\right) d x$

Name:
Instructor: Taylor
7. (5 pts.) The first iteration of Newton's method for solving $x^{3}+x^{2}+1=0$ starting at $x_{0}=-2$ gives
(a) $x_{1}=\frac{3}{8}$
(b) $\quad x_{1}=-\frac{3}{8}$
(c) $x_{1}=-\frac{19}{8}$
(d) $x_{1}=-\frac{15}{8}$
(e) $x_{1}=-\frac{13}{8}$

Name:
Instructor: Taylor

Partial Credit

8. (11 pts.) Let $y=f(x)=5 x^{2 / 5}-2 x$ with $y^{\prime}=2\left(x^{-3 / 5}-1\right)$ and $y^{\prime \prime}=-\frac{6}{5} x^{-8 / 5}$.

Find all critical points
List the intervals where f is increasing / decreasing.
List the intervals where f is concave up / concave down
List all local maxima and local minima, or say so if there are none
List all inflection points, or say so if there are none

Name:
Instructor: Taylor
9. (11 pts.) Let $f(x)=\frac{20 x}{4+x^{2}}$. Then, all derivatives of f are defined for all $x \in(-\infty, \infty)$. The following information is assumed to be known - we do not want you to verify it!

$$
\begin{gathered}
f^{\prime}(x)<0 \text { for } x \in(-\infty,-2) \text { and } x \in(2, \infty), \quad f^{\prime}(x)>0 \text { for } x \in(-2,2), \\
\\
f^{\prime \prime}(x)<0 \text { for } x \in(-\infty,-6) \text { and } x \in(0,6) \\
\\
f^{\prime \prime}(x)>0 \text { for } x \in(-6,0) \text { and } x \in(6, \infty) .
\end{gathered}
$$

The only asymptote of f is $y=0$.
Evaluate f at critical points and inflection points and graph the function.

Name:
Instructor: Taylor
10.(11 pts.) Car A and car B are approaching the intersection " C " of two streets intersecting at a right angle. Car A is going South at 45 mph , car B is heading West at 30 mph . We denote the angle $\angle(C, B, A)$ by θ, the distance from C to B by x, and the distance from C to A by y. Then, $\tan \theta=\frac{y}{x}$. At what rate is the angle θ changing when car A and car B are both 1 mile from the intersection?

Name:
Instructor: Taylor
11. (11 pts.) Let $f(x)=12-x^{2}$ for $x \in[-\sqrt{12}, \sqrt{12}]$. The graph of f and the x-axis bound a region. Find the area of the rectangle R with largest area which can be inscribed in this region. You may use the fact that the rectangle is symmetric to the y-axis.
$-\sqrt{12}$
$\sqrt{12}$

Name:
Instructor: Taylor
12.(11 pts.) About how accurately should you measure a variable t to insure that your calculation of the area of the rectangle with sides $a=t$, and $b=2 t$ is within 5% of its true value?

Name:
Instructor: Taylor
13. (10 pts.) Find the value or values of c guaranteed by the Mean Value Theorem applied to the function $f(x)=x^{3}$ on the interval $[1,2]$.

Name: \qquad
Instructor: Wong \qquad

Exam II

October 26, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

1. (a)
(b)
(c)
(d)
(e)
2. (a)
(b)
(c)
(d)
(e)
3. (a)
(b)
(c)
(d)
(e)
4. (a)
(b)
(c)
(d)
(e)
5. (a)
(b)
(c)
(d)
(e)
6. (a)
(b)
(c)
(d)
(e)
7. (a)
(b)
(c)
(d)
(e)

DO NOT WRITE IN THIS BOX!

Total multiple choice: \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad
Total:

Name: \qquad
Instructor: \qquad
\qquad

Multiple Choice

1. (5 pts.) If $x+\sin y=x y$ then at the point $x=0$ and $y=0$, the value of $\frac{d y}{d x}$ is
(a) 0
(b) 1
(c) -1
(d) 2
(e) $\frac{1}{2}$
2. (5 pts.) Suppose the derivative of a function $y=f(x)$ is $y^{\prime}=x^{2}(x+2)(x-2)$. Then,
(a) $x=-2$ is a local minimum
(b) $\quad x=2$ is a local minimum
(c) $\quad x=2$ is a local maximum
(d) $\quad x=0$ is a local minimum
(e) $\quad x=0$ is a local maximum

Name:
Instructor: Wong \qquad
3. (5 pts.) A thin circular plate is heated in the oven. Its radius is increasing at a rate of 1 inch per hour. At what rate is the area of the plate increasing when the radius is 10 inches?
(a) 20π
(b) 10π
(c) 2π
(d) π
(e) 100π
4. (5 pts.) Let $f(x)=x^{2}-9$ for $0 \leq x \leq 5$. Then the absolute maximium occurs at $x=$
(a) -3
(b) 0
(c) 3
(d) 5
(e) there is no absolute maximum

Name: \qquad
Instructor: Wong
5. (5 pts.) The asymptotes of the function

$$
f(x)=\frac{x^{2}-x-2}{x^{2}+3 x+2}=\frac{(x+1)(x-2)}{(x+1)(x+2)}
$$

are
(a) $\quad x=-1$ and $x=-2$
(b) $\quad x=-2$ and $y=1$
(c) $\quad x=2$ and $y=-1$
(d) $\quad x=1$ and $x=2$
(e) $\quad x=-1, x=-2$, and $y=1$
6. (5 pts.) Find $d y$ for $y=\cos \left(4-x^{2}\right)$
(a) $d y=y^{\prime}$
(b) $d y=-\sin \left(4-x^{2}\right) d x$
(c) $d y=2 x \sin \left(4-x^{2}\right) d x$
(d) $\quad d y=\frac{d x}{-\sin \left(4-x^{2}\right)}$
(e) $\quad d y=2 \cos \left(4-x^{2}\right) \sin \left(4-x^{2}\right) d x$

Name:
Instructor: Wong
7.(5 pts.) The first iteration of Newton's method for solving $x^{3}+x^{2}+1=0$ starting at $x_{0}=-2$ gives
(a) $x_{1}=\frac{3}{8}$
(b) $\quad x_{1}=-\frac{3}{8}$
(c) $x_{1}=-\frac{19}{8}$
(d) $x_{1}=-\frac{15}{8}$
(e) $x_{1}=-\frac{13}{8}$

Name:
Instructor: Wong

Partial Credit

8. (11 pts.) Let $y=f(x)=5 x^{2 / 5}-2 x$ with $y^{\prime}=2\left(x^{-3 / 5}-1\right)$ and $y^{\prime \prime}=-\frac{6}{5} x^{-8 / 5}$.

Find all critical points
List the intervals where f is increasing / decreasing.
List the intervals where f is concave up / concave down
List all local maxima and local minima, or say so if there are none
List all inflection points, or say so if there are none

Name:
Instructor: Wong
9. (11 pts.) Let $f(x)=\frac{20 x}{4+x^{2}}$. Then, all derivatives of f are defined for all $x \in(-\infty, \infty)$. The following information is assumed to be known - we do not want you to verify it!

$$
\begin{gathered}
f^{\prime}(x)<0 \text { for } x \in(-\infty,-2) \text { and } x \in(2, \infty), \quad f^{\prime}(x)>0 \text { for } x \in(-2,2), \\
\\
f^{\prime \prime}(x)<0 \text { for } x \in(-\infty,-6) \text { and } x \in(0,6) \\
\\
f^{\prime \prime}(x)>0 \text { for } x \in(-6,0) \text { and } x \in(6, \infty) .
\end{gathered}
$$

The only asymptote of f is $y=0$.
Evaluate f at critical points and inflection points and graph the function.

Name:
Instructor: Wong
10.(11 pts.) Car A and car B are approaching the intersection " C " of two streets intersecting at a right angle. Car A is going South at 45 mph , car B is heading West at 30 mph . We denote the angle $\angle(C, B, A)$ by θ, the distance from C to B by x, and the distance from C to A by y. Then, $\tan \theta=\frac{y}{x}$. At what rate is the angle θ changing when car A and car B are both 1 mile from the intersection?

Name:
Instructor: Wong
11. (11 pts.) Let $f(x)=12-x^{2}$ for $x \in[-\sqrt{12}, \sqrt{12}]$. The graph of f and the x-axis bound a region. Find the area of the rectangle R with largest area which can be inscribed in this region. You may use the fact that the rectangle is symmetric to the y-axis.
$-\sqrt{12}$
$\sqrt{12}$

Name:
Instructor: Wong
12.(11 pts.) About how accurately should you measure a variable t to insure that your calculation of the area of the rectangle with sides $a=t$, and $b=2 t$ is within 5% of its true value?

Name:
Instructor: Wong
13.(10 pts.) Find the value or values of c guaranteed by the Mean Value Theorem applied to the function $f(x)=x^{3}$ on the interval $[1,2]$.

Name: \qquad
Instructor: \qquad

Exam II
October 26, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

1. (a)
(b)
(c)
(d)
(e)
2. (a)
(b)
(c)
(d)
(e)
3. (a)
(b)
(c)
(d)
(e)
4. (a)
(b)
(c)
(d)
(e)
5. (a)
(b)
(c)
(d)
(e)
6. (a)
(b)
(c)
(d)
(e)
7. (a)
(b)
(c)
(d)
(e)

DO NOT WRITE IN THIS BOX!

Total multiple choice: \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad
Total:

Name: \qquad
Instructor: \qquad Cao

Multiple Choice

1. (5 pts.) If $x+\sin y=x y$ then at the point $x=0$ and $y=0$, the value of $\frac{d y}{d x}$ is
(a) 0
(b) 1
(c) -1
(d) 2
(e) $\frac{1}{2}$
2. (5 pts.) Suppose the derivative of a function $y=f(x)$ is $y^{\prime}=x^{2}(x+2)(x-2)$. Then,
(a) $x=-2$ is a local minimum
(b) $\quad x=2$ is a local minimum
(c) $\quad x=2$ is a local maximum
(d) $\quad x=0$ is a local minimum
(e) $\quad x=0$ is a local maximum

Name:
Instructor: Cao
3. (5 pts .) A thin circular plate is heated in the oven. Its radius is increasing at a rate of 1 inch per hour. At what rate is the area of the plate increasing when the radius is 10 inches?
(a) 20π
(b) 10π
(c) 2π
(d) π
(e) 100π
4. (5 pts.) Let $f(x)=x^{2}-9$ for $0 \leq x \leq 5$. Then the absolute maximium occurs at $x=$
(a) -3
(b) 0
(c) 3
(d) 5
(e) there is no absolute maximum

Name: \qquad
Instructor: \qquad
5. (5 pts.) The asymptotes of the function

$$
f(x)=\frac{x^{2}-x-2}{x^{2}+3 x+2}=\frac{(x+1)(x-2)}{(x+1)(x+2)}
$$

are
(a) $\quad x=-1$ and $x=-2$
(b) $\quad x=-2$ and $y=1$
(c) $\quad x=2$ and $y=-1$
(d) $\quad x=1$ and $x=2$
(e) $\quad x=-1, x=-2$, and $y=1$
6. (5 pts.) Find $d y$ for $y=\cos \left(4-x^{2}\right)$
(a) $d y=y^{\prime}$
(b) $d y=-\sin \left(4-x^{2}\right) d x$
(c) $d y=2 x \sin \left(4-x^{2}\right) d x$
(d) $\quad d y=\frac{d x}{-\sin \left(4-x^{2}\right)}$
(e) $\quad d y=2 \cos \left(4-x^{2}\right) \sin \left(4-x^{2}\right) d x$

Name:
Instructor: Cao
7.(5 pts.) The first iteration of Newton's method for solving $x^{3}+x^{2}+1=0$ starting at $x_{0}=-2$ gives
(a) $x_{1}=\frac{3}{8}$
(b) $\quad x_{1}=-\frac{3}{8}$
(c) $x_{1}=-\frac{19}{8}$
(d) $x_{1}=-\frac{15}{8}$
(e) $x_{1}=-\frac{13}{8}$

Name:
Instructor: Cao

Partial Credit

8. (11 pts.) Let $y=f(x)=5 x^{2 / 5}-2 x$ with $y^{\prime}=2\left(x^{-3 / 5}-1\right)$ and $y^{\prime \prime}=-\frac{6}{5} x^{-8 / 5}$.

Find all critical points
List the intervals where f is increasing / decreasing.
List the intervals where f is concave up / concave down
List all local maxima and local minima, or say so if there are none
List all inflection points, or say so if there are none

Name:
Instructor: Cao
9. (11 pts.) Let $f(x)=\frac{20 x}{4+x^{2}}$. Then, all derivatives of f are defined for all $x \in(-\infty, \infty)$. The following information is assumed to be known - we do not want you to verify it!

$$
\begin{gathered}
f^{\prime}(x)<0 \text { for } x \in(-\infty,-2) \text { and } x \in(2, \infty), \quad f^{\prime}(x)>0 \text { for } x \in(-2,2), \\
\\
f^{\prime \prime}(x)<0 \text { for } x \in(-\infty,-6) \text { and } x \in(0,6), \\
\\
f^{\prime \prime}(x)>0 \text { for } x \in(-6,0) \text { and } x \in(6, \infty) .
\end{gathered}
$$

The only asymptote of f is $y=0$.
Evaluate f at critical points and inflection points and graph the function.

Name:
Instructor: Cao
10. (11 pts.) Car A and car B are approaching the intersection " C " of two streets intersecting at a right angle. Car A is going South at 45 mph , car B is heading West at 30 mph . We denote the angle $\angle(C, B, A)$ by θ, the distance from C to B by x, and the distance from C to A by y. Then, $\tan \theta=\frac{y}{x}$. At what rate is the angle θ changing when car A and car B are both 1 mile from the intersection?

Name:
Instructor: Cao
11. (11 pts.) Let $f(x)=12-x^{2}$ for $x \in[-\sqrt{12}, \sqrt{12}]$. The graph of f and the x-axis bound a region. Find the area of the rectangle R with largest area which can be inscribed in this region. You may use the fact that the rectangle is symmetric to the y-axis.
$-\sqrt{12}$
$\sqrt{12}$

Name:
Instructor: Cao
12.(11 pts.) About how accurately should you measure a variable t to insure that your calculation of the area of the rectangle with sides $a=t$, and $b=2 t$ is within 5% of its true value?

Name:
Instructor: Cao
13.(10 pts.) Find the value or values of c guaranteed by the Mean Value Theorem applied to the function $f(x)=x^{3}$ on the interval $[1,2]$.

Name: \qquad
Instructor: \qquad

Exam II
October 26, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

1. (a)
(b)
(c)
(d)
(e)
2. (a)
(b)
(c)
(d)
(e)
3. (a)
(b)
(c)
(d)
(e)
4. (a)
(b)
(c)
(d)
(e)
5. (a)
(b)
(c)
(d)
(e)
6. (a)
(b)
(c)
(d)
(e)
7. (a)
(b)
(c)
(d)
(e)

DO NOT WRITE IN THIS BOX!

Total multiple choice: \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad
Total:

Name:
Instructor: \qquad

Multiple Choice

1. (5 pts.) If $x+\sin y=x y$ then at the point $x=0$ and $y=0$, the value of $\frac{d y}{d x}$ is
(a) 0
(b) 1
(c) -1
(d) 2
(e) $\frac{1}{2}$
2. (5 pts.) Suppose the derivative of a function $y=f(x)$ is $y^{\prime}=x^{2}(x+2)(x-2)$. Then,
(a) $x=-2$ is a local minimum
(b) $\quad x=2$ is a local minimum
(c) $\quad x=2$ is a local maximum
(d) $\quad x=0$ is a local minimum
(e) $\quad x=0$ is a local maximum

Name:
Instructor: Jarre
3. (5 pts.) A thin circular plate is heated in the oven. Its radius is increasing at a rate of 1 inch per hour. At what rate is the area of the plate increasing when the radius is 10 inches?
(a) 20π
(b) 10π
(c) 2π
(d) π
(e) 100π
4. (5 pts.) Let $f(x)=x^{2}-9$ for $0 \leq x \leq 5$. Then the absolute maximium occurs at $x=$
(a) -3
(b) 0
(c) 3
(d) 5
(e) there is no absolute maximum

Name: \qquad
Instructor: \qquad Jarre
5. (5 pts.) The asymptotes of the function

$$
f(x)=\frac{x^{2}-x-2}{x^{2}+3 x+2}=\frac{(x+1)(x-2)}{(x+1)(x+2)}
$$

are
(a) $\quad x=-1$ and $x=-2$
(b) $\quad x=-2$ and $y=1$
(c) $\quad x=2$ and $y=-1$
(d) $\quad x=1$ and $x=2$
(e) $\quad x=-1, x=-2$, and $y=1$
6. (5 pts.) Find $d y$ for $y=\cos \left(4-x^{2}\right)$
(a) $d y=y^{\prime}$
(b) $d y=-\sin \left(4-x^{2}\right) d x$
(c) $d y=2 x \sin \left(4-x^{2}\right) d x$
(d) $\quad d y=\frac{d x}{-\sin \left(4-x^{2}\right)}$
(e) $d y=2 \cos \left(4-x^{2}\right) \sin \left(4-x^{2}\right) d x$

Name:
Instructor: Jarre
7.(5 pts.) The first iteration of Newton's method for solving $x^{3}+x^{2}+1=0$ starting at $x_{0}=-2$ gives
(a) $x_{1}=\frac{3}{8}$
(b) $\quad x_{1}=-\frac{3}{8}$
(c) $x_{1}=-\frac{19}{8}$
(d) $x_{1}=-\frac{15}{8}$
(e) $x_{1}=-\frac{13}{8}$

Name:
Instructor: Jarre

Partial Credit

8. (11 pts.) Let $y=f(x)=5 x^{2 / 5}-2 x$ with $y^{\prime}=2\left(x^{-3 / 5}-1\right)$ and $y^{\prime \prime}=-\frac{6}{5} x^{-8 / 5}$.

Find all critical points
List the intervals where f is increasing / decreasing.
List the intervals where f is concave up / concave down
List all local maxima and local minima, or say so if there are none
List all inflection points, or say so if there are none

Name:
Instructor: \qquad
9. (11 pts.) Let $f(x)=\frac{20 x}{4+x^{2}}$. Then, all derivatives of f are defined for all $x \in(-\infty, \infty)$. The following information is assumed to be known - we do not want you to verify it!

$$
\begin{gathered}
f^{\prime}(x)<0 \text { for } x \in(-\infty,-2) \text { and } x \in(2, \infty), \quad f^{\prime}(x)>0 \text { for } x \in(-2,2), \\
\\
f^{\prime \prime}(x)<0 \text { for } x \in(-\infty,-6) \text { and } x \in(0,6), \\
\\
f^{\prime \prime}(x)>0 \text { for } x \in(-6,0) \text { and } x \in(6, \infty) .
\end{gathered}
$$

The only asymptote of f is $y=0$.
Evaluate f at critical points and inflection points and graph the function.

Name:
Instructor: \qquad
10.(11 pts.) Car A and car B are approaching the intersection " C " of two streets intersecting at a right angle. Car A is going South at 45 mph , car B is heading West at 30 mph . We denote the angle $\angle(C, B, A)$ by θ, the distance from C to B by x, and the distance from C to A by y. Then, $\tan \theta=\frac{y}{x}$. At what rate is the angle θ changing when car A and car B are both 1 mile from the intersection?

Name:
Instructor: Jarre
11. (11 pts.) Let $f(x)=12-x^{2}$ for $x \in[-\sqrt{12}, \sqrt{12}]$. The graph of f and the x-axis bound a region. Find the area of the rectangle R with largest area which can be inscribed in this region. You may use the fact that the rectangle is symmetric to the y-axis.
$-\sqrt{12}$
$\sqrt{12}$

Name:
Instructor: Jarre
12.(11 pts.) About how accurately should you measure a variable t to insure that your calculation of the area of the rectangle with sides $a=t$, and $b=2 t$ is within 5% of its true value?

Name:
Instructor: Jarre
13. (10 pts.) Find the value or values of c guaranteed by the Mean Value Theorem applied to the function $f(x)=x^{3}$ on the interval $[1,2]$.

Name: \qquad
Instructor: Nollet

Exam II

October 26, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

1. (a)
(b)
(c)
(d)
(e)
2. (a)
(b)
(c)
(d)
(e)
3. (a)
(b)
(c)
(d)
(e)
4. (a)
(b)
(c)
(d)
(e)
5. (a)
(b)
(c)
(d)
(e)
6. (a)
(b)
(c)
(d)
(e)
7. (a)
(b)
(c)
(d)
(e)

DO NOT WRITE IN THIS BOX!

Total multiple choice: \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad
Total:

Name: \qquad
Instructor: \qquad

Multiple Choice

1. (5 pts.) If $x+\sin y=x y$ then at the point $x=0$ and $y=0$, the value of $\frac{d y}{d x}$ is
(a) 0
(b) 1
(c) -1
(d) 2
(e) $\frac{1}{2}$
2. (5 pts.) Suppose the derivative of a function $y=f(x)$ is $y^{\prime}=x^{2}(x+2)(x-2)$. Then,
(a) $x=-2$ is a local minimum
(b) $\quad x=2$ is a local minimum
(c) $\quad x=2$ is a local maximum
(d) $\quad x=0$ is a local minimum
(e) $\quad x=0$ is a local maximum

Name:
Instructor: Nollet
3. (5 pts.) A thin circular plate is heated in the oven. Its radius is increasing at a rate of 1 inch per hour. At what rate is the area of the plate increasing when the radius is 10 inches?
(a) 20π
(b) 10π
(c) 2π
(d) π
(e) 100π
4. (5 pts.) Let $f(x)=x^{2}-9$ for $0 \leq x \leq 5$. Then the absolute maximium occurs at $x=$
(a) -3
(b) 0
(c) 3
(d) 5
(e) there is no absolute maximum

Name: \qquad
Instructor: \qquad
5. (5 pts.) The asymptotes of the function

$$
f(x)=\frac{x^{2}-x-2}{x^{2}+3 x+2}=\frac{(x+1)(x-2)}{(x+1)(x+2)}
$$

are
(a) $\quad x=-1$ and $x=-2$
(b) $\quad x=-2$ and $y=1$
(c) $\quad x=2$ and $y=-1$
(d) $\quad x=1$ and $x=2$
(e) $\quad x=-1, x=-2$, and $y=1$
6. (5 pts.) Find $d y$ for $y=\cos \left(4-x^{2}\right)$
(a) $d y=y^{\prime}$
(b) $d y=-\sin \left(4-x^{2}\right) d x$
(c) $d y=2 x \sin \left(4-x^{2}\right) d x$
(d) $\quad d y=\frac{d x}{-\sin \left(4-x^{2}\right)}$
(e) $\quad d y=2 \cos \left(4-x^{2}\right) \sin \left(4-x^{2}\right) d x$

Name:
Instructor: Nollet
7.(5 pts.) The first iteration of Newton's method for solving $x^{3}+x^{2}+1=0$ starting at $x_{0}=-2$ gives
(a) $x_{1}=\frac{3}{8}$
(b) $\quad x_{1}=-\frac{3}{8}$
(c) $x_{1}=-\frac{19}{8}$
(d) $x_{1}=-\frac{15}{8}$
(e) $x_{1}=-\frac{13}{8}$

Name:
Instructor: Nollet

Partial Credit

8. (11 pts.) Let $y=f(x)=5 x^{2 / 5}-2 x$ with $y^{\prime}=2\left(x^{-3 / 5}-1\right)$ and $y^{\prime \prime}=-\frac{6}{5} x^{-8 / 5}$.

Find all critical points
List the intervals where f is increasing / decreasing.
List the intervals where f is concave up / concave down
List all local maxima and local minima, or say so if there are none
List all inflection points, or say so if there are none

Name:
Instructor: Nollet
9. (11 pts.) Let $f(x)=\frac{20 x}{4+x^{2}}$. Then, all derivatives of f are defined for all $x \in(-\infty, \infty)$. The following information is assumed to be known - we do not want you to verify it!

$$
\begin{gathered}
f^{\prime}(x)<0 \text { for } x \in(-\infty,-2) \text { and } x \in(2, \infty), \quad f^{\prime}(x)>0 \text { for } x \in(-2,2), \\
\\
f^{\prime \prime}(x)<0 \text { for } x \in(-\infty,-6) \text { and } x \in(0,6), \\
\\
f^{\prime \prime}(x)>0 \text { for } x \in(-6,0) \text { and } x \in(6, \infty) .
\end{gathered}
$$

The only asymptote of f is $y=0$.
Evaluate f at critical points and inflection points and graph the function.

Name:
Instructor: Nollet
10. (11 pts.) Car A and car B are approaching the intersection " C " of two streets intersecting at a right angle. Car A is going South at 45 mph , car B is heading West at 30 mph . We denote the angle $\angle(C, B, A)$ by θ, the distance from C to B by x, and the distance from C to A by y. Then, $\tan \theta=\frac{y}{x}$. At what rate is the angle θ changing when car A and car B are both 1 mile from the intersection?

Name:
Instructor: Nollet
11. (11 pts.) Let $f(x)=12-x^{2}$ for $x \in[-\sqrt{12}, \sqrt{12}]$. The graph of f and the x-axis bound a region. Find the area of the rectangle R with largest area which can be inscribed in this region. You may use the fact that the rectangle is symmetric to the y-axis.
$-\sqrt{12}$
$\sqrt{12}$

Name:
Instructor: Nollet
12.(11 pts.) About how accurately should you measure a variable t to insure that your calculation of the area of the rectangle with sides $a=t$, and $b=2 t$ is within 5% of its true value?

Name:
Instructor: Nollet
13.(10 pts.) Find the value or values of c guaranteed by the Mean Value Theorem applied to the function $f(x)=x^{3}$ on the interval $[1,2]$.

Name: \qquad
Instructo: Bullwinkle

Exam II

October 26, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

1. (a)
(b)
(•)
(d)
(e)
2. (a)
(•)
(c)
(d)
(e)
3. (•)
(b)
(c)
(d)
(e)
4. (a)
(b)
(c)
(•)
(e)
5. (a)
(•)
(c)
(d)
(e)
6. (a)
(b)
(•)
(d)
(e)
7. (a)
(b)
(c)
(d)
(•)

DO NOT WRITE IN THIS BOX!

Total multiple choice: \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad
Total:

