Exam III November 30, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!							
PLE	EASE MA	RK YOUR A	NSWERS V	VITH AN X	, not a circle!		
1.	(a)	(b)	(c)	(d)	(e)		
2.	(a)	(b)	(c)	(d)	(e)		
3.	(a)	(b)	(c)	(d)	(e)		
4.	(a)	(b)	(c)	(d)	(e)		
5.	(a)	(b)	(c)	(d)	(e)		
6.	(a)	(b)	(c)	(d)	(e)		

DO NOT WRITE IN THIS BOX!					
Total multiple choice:					
7.					
8.					
9.					
10.					
11.					
12.					
13.					
Total:					

Name:

Instructor: Dwyer

Multiple Choice

1.(5 pts.)

$$\int (x^2 + \sin(x)) dx =$$
(a) $\frac{x^3}{3} - \cos(x)$.
(b) $\frac{x^3}{3} + \cos(x)$.
(c) $\frac{x^3}{3} - \cos(x) + c$.
(d) $\frac{x^3}{3} + \cos(x) + c$.
(e) $2x + \sin(x) + c$.

2.(5 pts.) Suppose that $\int_{-1}^{2} f(x) dx = -2$ and $\int_{-1}^{5} f(x) dx = 7$. Evaluate $\int_{2}^{5} 2 f(x) dx$. Be careful with the arithmetic.

- (a) 5. (b) 9. (c) 10.
- (d) 18. (e) Cannot be determined.

Name	
Trainc.	

3.(5 pts.) Suppose that f is continuous on [0, 10] and $\int_0^{10} f(x) dx = 50$. Which of the following must be true?

- (a) There exists a c in [0, 10] such that f(c) = 5.
- (b) There exists exactly one c in [0, 10] such that f(c) = 5.
- (c) There exists exactly one c in [0, 10] such that f(c) = 10.
- (d) There exists a c in [0, 10] such that f(c) = 50.
- (e) There exists a c in [0, 10] such that f'(c) = 5.

4.(5 pts.) Evaluate $\int_0^{\sqrt{2}} (\sqrt{4-x^2} - x) dx$ by interpreting it as an area that you know from elementary geometry.

- (a) 0. (b) $\frac{\pi}{2}$. (c) π .
- (d) 4π . (e) Cannot be determined.

5.(5 pts.) Find the derivative
$$\frac{dy}{dx}$$
 of the function $y = \int_{\pi}^{\sin(x)} t^2 dt$.
(a) $\pi x^2 \cos(x)$. (b) $2x \cos(x)$. (c) $t^2 \cos(t)$.

(d) $x^2 \sin(x)$. (e) $\sin^2(x) \cos(x)$.

6.(5 pts.)

$$\sum_{k=0}^{3} (2k+1) =$$

(a)
$$\int_0^3 (2x+1) dx$$
. (b) -14 (c) 10.

(d) 16. (e) 20.

Name:			

Partial Credit 7.(10 pts.) Solve the initial value problem: $\frac{dy}{dx} = \sin^3(x)\cos(x)$; $y(\pi) = -3$.

riame.

8.(10 pts.) Integrate
$$\int_0^1 x^3 (x^4 - 1)^{10} dx$$
.

9.(10 pts.) Find the area between the curves $y = 2 - x^2$ and y = x bounded by the lines x = 0 and x = 2.

Name:			
Instructor:	Dwyer		_

10.(10 pts.) Find the average value of $f(x) = \cos(x) + x$ from x = 0 to $x = 2\pi$.

N T	
Namo	
rame.	

11.(10 pts.)

- a. Estimate the integral $\int_0^4 \frac{1}{\sqrt{25-x^2}} dx$ using the **trapezoidal** rule with n = 4.
- b. Given that the fourth derivative of $\frac{1}{\sqrt{25-x^2}}$ is bounded in absolute value by 2.1 on the interval [0,4], give an upper bound for the error in using **Simpson's** rule with n = 410.

We are looking for formulas; in particular DO NOT attempt to evaluate the sums or do any arithmetic.

Name:		

12.(10 pts.) Find the volume of the solid which lies betwen the planes x = -1 and x = 1. The cross sections perpendicular to the *x*-axis are squares whose diagonals run from $y = -(1 - x^2)$ to $y = (1 - x^2)$.

Name:			

13.(10 pts.) Find the volume of the solid formed when the region bounded by the *x*-axis, the curve $y = \sqrt{\sin(x)}$ and $x = \pi$ is rotated around the *x*-axis.

١т		
N	amo	
	ame.	

Exam III November 30, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!							
PLE	PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!						
1.	(a)	(b)	(c)	(d)	(e)		
2.	(a)	(b)	(c)	(d)	(e)		
3.	(a)	(b)	(c)	(d)	(e)		
4.	(a)	(b)	(c)	(d)	(e)		
5.	(a)	(b)	(c)	(d)	(e)		
6.	(a)	(b)	(c)	(d)	(e)		

DO NOT WRITE IN THIS BOX!					
Total multiple choice:					
7.					
8.					
9.					
10.					
11.					
12.					
13.					
Total:					

Name:

Instructor: Cholak

Multiple Choice

1.(5 pts.)

$$\int (x^2 + \sin(x)) dx =$$
(a) $\frac{x^3}{3} - \cos(x)$.
(b) $\frac{x^3}{3} + \cos(x)$.
(c) $\frac{x^3}{3} - \cos(x) + c$.
(d) $\frac{x^3}{3} + \cos(x) + c$.
(e) $2x + \sin(x) + c$.

2.(5 pts.) Suppose that $\int_{-1}^{2} f(x) dx = -2$ and $\int_{-1}^{5} f(x) dx = 7$. Evaluate $\int_{2}^{5} 2 f(x) dx$. Be careful with the arithmetic.

- (a) 5. (b) 9. (c) 10.
- (d) 18. (e) Cannot be determined.

Name	
Trainc.	

3.(5 pts.) Suppose that f is continuous on [0, 10] and $\int_0^{10} f(x) dx = 50$. Which of the following must be true?

- (a) There exists a c in [0, 10] such that f(c) = 5.
- (b) There exists exactly one c in [0, 10] such that f(c) = 5.
- (c) There exists exactly one c in [0, 10] such that f(c) = 10.
- (d) There exists a c in [0, 10] such that f(c) = 50.
- (e) There exists a c in [0, 10] such that f'(c) = 5.

4.(5 pts.) Evaluate $\int_0^{\sqrt{2}} (\sqrt{4-x^2} - x) dx$ by interpreting it as an area that you know from elementary geometry.

- (a) 0. (b) $\frac{\pi}{2}$. (c) π .
- (d) 4π . (e) Cannot be determined.

	Name:					
			Instructor:	Ch	olak	
5. (5	pts.) Find the deriv	ative $\frac{dq}{dz}$	$\frac{y}{x}$ of the function y	$=\int_{\pi}^{\sin(z)}$	$t^{x)}t^{2}dt.$	
(a)	$\pi x^2 \cos(x).$	(b)	$2x\cos(x).$	(c)	$t^2\cos(t).$	
(d)	$x^2\sin(x).$	(e)	$\sin^2(x)\cos(x).$			

6.(5 pts.)

$$\sum_{k=0}^{3} (2k+1) =$$

(a)
$$\int_0^3 (2x+1) dx$$
. (b) -14 (c) 10.

(d) 16. (e) 20.

Partial Credit 7.(10 pts.) Solve the initial value problem: $\frac{dy}{dx} = \sin^3(x)\cos(x)$; $y(\pi) = -3$.

8.(10 pts.) Integrate
$$\int_0^1 x^3 (x^4 - 1)^{10} dx$$
.

١T		
N	ame:	

9.(10 pts.) Find the area between the curves $y = 2 - x^2$ and y = x bounded by the lines x = 0 and x = 2.

Name:		
Instructor:	Cholak	

10.(10 pts.) Find the average value of $f(x) = \cos(x) + x$ from x = 0 to $x = 2\pi$.

Name:	
T OILLO.	

11.(10 pts.)

- a. Estimate the integral $\int_0^4 \frac{1}{\sqrt{25-x^2}} dx$ using the **trapezoidal** rule with n = 4.
- b. Given that the fourth derivative of $\frac{1}{\sqrt{25-x^2}}$ is bounded in absolute value by 2.1 on the interval [0,4], give an upper bound for the error in using **Simpson's** rule with n = 410.

We are looking for formulas; in particular DO NOT attempt to evaluate the sums or do any arithmetic.

Name:	_		

12.(10 pts.) Find the volume of the solid which lies betwen the planes x = -1 and x = 1. The cross sections perpendicular to the *x*-axis are squares whose diagonals run from $y = -(1 - x^2)$ to $y = (1 - x^2)$.

Name:		

13.(10 pts.) Find the volume of the solid formed when the region bounded by the *x*-axis, the curve $y = \sqrt{\sin(x)}$ and $x = \pi$ is rotated around the *x*-axis.

١т		
N	amo	
	ame.	

Exam III November 30, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!						
PLE	EASE MAR	K YOUR A	NSWERS V	VITH AN X,	not a circle!	
1.	(a)	(b)	(c)	(d)	(e)	
2.	(a)	(b)	(c)	(d)	(e)	
3.	(a)	(b)	(c)	(d)	(e)	
4.	(a)	(b)	(c)	(d)	(e)	
5.	(a)	(b)	(c)	(d)	(e)	
6.	(a)	(b)	(c)	(d)	(e)	

DO NOT WRITE IN THIS BOX!				
Total multiple choice:				
7.				
8.				
9.				
10.				
11.				
12.				
13.				
Total:				

Name:

Instructor: Taylor

Multiple Choice

1.(5 pts.)

$$\int (x^2 + \sin(x)) dx =$$
(a) $\frac{x^3}{3} - \cos(x)$.
(b) $\frac{x^3}{3} + \cos(x)$.
(c) $\frac{x^3}{3} - \cos(x) + c$.
(d) $\frac{x^3}{3} + \cos(x) + c$.
(e) $2x + \sin(x) + c$.

2.(5 pts.) Suppose that $\int_{-1}^{2} f(x) dx = -2$ and $\int_{-1}^{5} f(x) dx = 7$. Evaluate $\int_{2}^{5} 2 f(x) dx$. Be careful with the arithmetic.

- (a) 5. (b) 9. (c) 10.
- (d) 18. (e) Cannot be determined.

Name	
ramo.	

3.(5 pts.) Suppose that f is continuous on [0, 10] and $\int_0^{10} f(x)dx = 50$. Which of the following must be true?

- (a) There exists a c in [0, 10] such that f(c) = 5.
- (b) There exists exactly one c in [0, 10] such that f(c) = 5.
- (c) There exists exactly one c in [0, 10] such that f(c) = 10.
- (d) There exists a c in [0, 10] such that f(c) = 50.
- (e) There exists a c in [0, 10] such that f'(c) = 5.

4.(5 pts.) Evaluate $\int_0^{\sqrt{2}} (\sqrt{4-x^2} - x) dx$ by interpreting it as an area that you know from elementary geometry.

- (a) 0. (b) $\frac{\pi}{2}$. (c) π .
- (d) 4π . (e) Cannot be determined.

		Name:		
		Instructor:	Taj	ylor
5. (5	pts.) Find the d	erivative $\frac{dy}{dx}$ of the function $y =$	$=\int_{\pi}^{\sin(z)}$	$t^{x)}t^{2}dt.$
(a)	$\pi x^2 \cos(x).$	(b) $2x\cos(x)$.	(c)	$t^2\cos(t).$

(d) $x^2 \sin(x)$. (e) $\sin^2(x) \cos(x)$.

6.(5 pts.)

$$\sum_{k=0}^{3} (2k+1) =$$

(a)
$$\int_0^3 (2x+1) dx$$
. (b) -14 (c) 10.

(d) 16. (e) 20.

Partial Credit 7.(10 pts.) Solve the initial value problem: $\frac{dy}{dx} = \sin^3(x)\cos(x)$; $y(\pi) = -3$.

8.(10 pts.) Integrate
$$\int_0^1 x^3 (x^4 - 1)^{10} dx$$
.

9.(10 pts.) Find the area between the curves $y = 2 - x^2$ and y = x bounded by the lines x = 0 and x = 2.

Name:		
Instructor:	Taylor	

10.(10 pts.) Find the average value of $f(x) = \cos(x) + x$ from x = 0 to $x = 2\pi$.

N T	
Namo	
rame.	

11.(10 pts.)

- a. Estimate the integral $\int_0^4 \frac{1}{\sqrt{25-x^2}} dx$ using the **trapezoidal** rule with n = 4.
- b. Given that the fourth derivative of $\frac{1}{\sqrt{25-x^2}}$ is bounded in absolute value by 2.1 on the interval [0,4], give an upper bound for the error in using **Simpson's** rule with n = 410.

We are looking for formulas; in particular DO NOT attempt to evaluate the sums or do any arithmetic.

Name:		

12.(10 pts.) Find the volume of the solid which lies betwen the planes x = -1 and x = 1. The cross sections perpendicular to the *x*-axis are squares whose diagonals run from $y = -(1 - x^2)$ to $y = (1 - x^2)$.

Name:			

13.(10 pts.) Find the volume of the solid formed when the region bounded by the *x*-axis, the curve $y = \sqrt{\sin(x)}$ and $x = \pi$ is rotated around the *x*-axis.

١т		
N	amo	
	ame.	

Instructor: Wong

Exam III November 30, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!								
PLE	EASE MARK	X YOUR	ANSWERS	WITH AN X,	not a circle!			
1.	(a)	(b)	(c)	(d)	(e)			
2.	(a)	(b)	(c)	(d)	(e)			
3.	(a)	(b)	(c)	(d)	(e)			
4.	(a)	(b)	(c)	(d)	(e)			
5.	(a)	(b)	(c)	(d)	(e)			
6.	(a)	(b)	(c)	(d)	(e)			

DO NOT WRITE IN THIS BOX!					
Total multiple choice:					
7.					
8.					
9.					
10.					
11.					
12.					
13.					
Total:					

Name:

Instructor: Wong

Multiple Choice

1.(5 pts.)

$$\int (x^2 + \sin(x)) dx =$$
(a) $\frac{x^3}{3} - \cos(x)$. (b) $\frac{x^3}{3} + \cos(x)$. (c) $\frac{x^3}{3} - \cos(x) + c$.
(d) $\frac{x^3}{3} + \cos(x) + c$. (e) $2x + \sin(x) + c$.

2.(5 pts.) Suppose that $\int_{-1}^{2} f(x) dx = -2$ and $\int_{-1}^{5} f(x) dx = 7$. Evaluate $\int_{2}^{5} 2 f(x) dx$. Be careful with the arithmetic.

- (a) 5. (b) 9. (c) 10.
- (d) 18. (e) Cannot be determined.

Name	
Trainc.	

Instructor: Wong

3.(5 pts.) Suppose that f is continuous on [0, 10] and $\int_0^{10} f(x) dx = 50$. Which of the following must be true?

- (a) There exists a c in [0, 10] such that f(c) = 5.
- (b) There exists exactly one c in [0, 10] such that f(c) = 5.
- (c) There exists exactly one c in [0, 10] such that f(c) = 10.
- (d) There exists a c in [0, 10] such that f(c) = 50.
- (e) There exists a c in [0, 10] such that f'(c) = 5.

4.(5 pts.) Evaluate $\int_0^{\sqrt{2}} (\sqrt{4-x^2} - x) dx$ by interpreting it as an area that you know from elementary geometry.

- (a) 0. (b) $\frac{\pi}{2}$. (c) π .
- (d) 4π . (e) Cannot be determined.
5.(5 pts.) Find the derivative
$$\frac{dy}{dx}$$
 of the function $y = \int_{\pi}^{\sin(x)} t^2 dt$.
(a) $\pi x^2 \cos(x)$. (b) $2x \cos(x)$. (c) $t^2 \cos(t)$.

(d) $x^2 \sin(x)$. (e) $\sin^2(x) \cos(x)$.

6.(5 pts.)

$$\sum_{k=0}^{3} (2k+1) =$$

(a)
$$\int_0^3 (2x+1) dx$$
. (b) -14 (c) 10.

(d) 16. (e) 20.

Partial Credit 7.(10 pts.) Solve the initial value problem: $\frac{dy}{dx} = \sin^3(x)\cos(x)$; $y(\pi) = -3$.

8.(10 pts.) Integrate
$$\int_0^1 x^3 (x^4 - 1)^{10} dx$$
.

Name:	
r vonno.	

9.(10 pts.) Find the area between the curves $y = 2 - x^2$ and y = x bounded by the lines x = 0 and x = 2.

Name:		
Instructor:	Wong	

10.(10 pts.) Find the average value of $f(x) = \cos(x) + x$ from x = 0 to $x = 2\pi$.

N T	
Name	
rame.	

11.(10 pts.)

- a. Estimate the integral $\int_0^4 \frac{1}{\sqrt{25-x^2}} dx$ using the **trapezoidal** rule with n = 4.
- b. Given that the fourth derivative of $\frac{1}{\sqrt{25-x^2}}$ is bounded in absolute value by 2.1 on the interval [0,4], give an upper bound for the error in using **Simpson's** rule with n = 410.

We are looking for formulas; in particular DO NOT attempt to evaluate the sums or do any arithmetic.

Name:			

12.(10 pts.) Find the volume of the solid which lies betwen the planes x = -1 and x = 1. The cross sections perpendicular to the *x*-axis are squares whose diagonals run from $y = -(1 - x^2)$ to $y = (1 - x^2)$.

Name:			

13.(10 pts.) Find the volume of the solid formed when the region bounded by the *x*-axis, the curve $y = \sqrt{\sin(x)}$ and $x = \pi$ is rotated around the *x*-axis.

• •		
N	amo	
	ame.	

Exam III November 30, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

	Good Luck!				
PLE	EASE MAI	RK YOUR A	NSWERS W	VITH AN X	, not a circle!
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)

DO NOT WRITE I	N THIS BOX!	
Total multiple choice:		
7.		
8.		
9.		
10.		
11.		
12.		
13.		
Total:		

Name:

Instructor: Cao

Multiple Choice

1.(5 pts.)

$$\int (x^2 + \sin(x)) dx =$$
(a) $\frac{x^3}{3} - \cos(x)$. (b) $\frac{x^3}{3} + \cos(x)$. (c) $\frac{x^3}{3} - \cos(x) + c$.
(d) $\frac{x^3}{3} + \cos(x) + c$. (e) $2x + \sin(x) + c$.

2.(5 pts.) Suppose that $\int_{-1}^{2} f(x) dx = -2$ and $\int_{-1}^{5} f(x) dx = 7$. Evaluate $\int_{2}^{5} 2 f(x) dx$. Be careful with the arithmetic.

- (a) 5. (b) 9. (c) 10.
- (d) 18. (e) Cannot be determined.

Name	
rame.	

3.(5 pts.) Suppose that f is continuous on [0, 10] and $\int_0^{10} f(x)dx = 50$. Which of the following must be true?

- (a) There exists a c in [0, 10] such that f(c) = 5.
- (b) There exists exactly one c in [0, 10] such that f(c) = 5.
- (c) There exists exactly one c in [0, 10] such that f(c) = 10.
- (d) There exists a c in [0, 10] such that f(c) = 50.
- (e) There exists a c in [0, 10] such that f'(c) = 5.

4.(5 pts.) Evaluate $\int_0^{\sqrt{2}} (\sqrt{4-x^2} - x) dx$ by interpreting it as an area that you know from elementary geometry.

- (a) 0. (b) $\frac{\pi}{2}$. (c) π .
- (d) 4π . (e) Cannot be determined.

Name:	Name:
-------	-------

5.(5 pts.) Find the derivative
$$\frac{dy}{dx}$$
 of the function $y = \int_{\pi}^{\sin(x)} t^2 dt$.
(a) $\pi x^2 \cos(x)$. (b) $2x \cos(x)$. (c) $t^2 \cos(t)$.

(d) $x^2 \sin(x)$. (e) $\sin^2(x) \cos(x)$.

6.(5 pts.)

$$\sum_{k=0}^{3} (2k+1) =$$

(a)
$$\int_0^3 (2x+1) dx$$
. (b) -14 (c) 10.

(d) 16. (e) 20.

Partial Credit 7.(10 pts.) Solve the initial value problem: $\frac{dy}{dx} = \sin^3(x)\cos(x)$; $y(\pi) = -3$.

8.(10 pts.) Integrate
$$\int_0^1 x^3 (x^4 - 1)^{10} dx$$
.

9.(10 pts.) Find the area between the curves $y = 2 - x^2$ and y = x bounded by the lines x = 0 and x = 2.

Name:			
Instructor:	Cao		

10.(10 pts.) Find the average value of $f(x) = \cos(x) + x$ from x = 0 to $x = 2\pi$.

N T	
Name	
rame.	

11.(10 pts.)

- a. Estimate the integral $\int_0^4 \frac{1}{\sqrt{25-x^2}} dx$ using the **trapezoidal** rule with n = 4.
- b. Given that the fourth derivative of $\frac{1}{\sqrt{25-x^2}}$ is bounded in absolute value by 2.1 on the interval [0,4], give an upper bound for the error in using **Simpson's** rule with n = 410.

We are looking for formulas; in particular DO NOT attempt to evaluate the sums or do any arithmetic.

Name:	_		

12.(10 pts.) Find the volume of the solid which lies betwen the planes x = -1 and x = 1. The cross sections perpendicular to the *x*-axis are squares whose diagonals run from $y = -(1 - x^2)$ to $y = (1 - x^2)$.

Name:			

13.(10 pts.) Find the volume of the solid formed when the region bounded by the *x*-axis, the curve $y = \sqrt{\sin(x)}$ and $x = \pi$ is rotated around the *x*-axis.

Exam III November 30, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!					
PLE	CASE MA	ARK YOUR AI	NSWERS V	WITH AN X,	not a circle!
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)

DO NOT WRITE I	N THIS BOX!	
Total multiple choice:		
7.		
8.		
9.		
10.		
11.		
12.		
13.		
Total:		

Name:

Instructor: Jarre

Multiple Choice

1.(5 pts.)

$$\int (x^2 + \sin(x)) dx =$$
(a) $\frac{x^3}{3} - \cos(x)$. (b) $\frac{x^3}{3} + \cos(x)$. (c) $\frac{x^3}{3} - \cos(x) + c$.
(d) $\frac{x^3}{3} + \cos(x) + c$. (e) $2x + \sin(x) + c$.

2.(5 pts.) Suppose that $\int_{-1}^{2} f(x) dx = -2$ and $\int_{-1}^{5} f(x) dx = 7$. Evaluate $\int_{2}^{5} 2 f(x) dx$. Be careful with the arithmetic.

- (a) 5. (b) 9. (c) 10.
- (d) 18. (e) Cannot be determined.

Name	
Traine.	

3.(5 pts.) Suppose that f is continuous on [0, 10] and $\int_0^{10} f(x) dx = 50$. Which of the following must be true?

- (a) There exists a c in [0, 10] such that f(c) = 5.
- (b) There exists exactly one c in [0, 10] such that f(c) = 5.
- (c) There exists exactly one c in [0, 10] such that f(c) = 10.
- (d) There exists a c in [0, 10] such that f(c) = 50.
- (e) There exists a c in [0, 10] such that f'(c) = 5.

4.(5 pts.) Evaluate $\int_0^{\sqrt{2}} (\sqrt{4-x^2} - x) dx$ by interpreting it as an area that you know from elementary geometry.

- (a) 0. (b) $\frac{\pi}{2}$. (c) π .
- (d) 4π . (e) Cannot be determined.

5.(5 pts.) Find the derivative
$$\frac{dy}{dx}$$
 of the function $y = \int_{\pi}^{\sin(x)} t^2 dt$.
(a) $\pi x^2 \cos(x)$. (b) $2x \cos(x)$. (c) $t^2 \cos(t)$.

(d) $x^2 \sin(x)$. (e) $\sin^2(x) \cos(x)$.

6.(5 pts.)

$$\sum_{k=0}^{3} (2k+1) =$$

(a)
$$\int_0^3 (2x+1) dx$$
. (b) -14 (c) 10.

(d) 16. (e) 20.

Name:		

Partial Credit 7.(10 pts.) Solve the initial value problem: $\frac{dy}{dx} = \sin^3(x)\cos(x)$; $y(\pi) = -3$.

8.(10 pts.) Integrate
$$\int_0^1 x^3 (x^4 - 1)^{10} dx$$
.

N	ame:	
	and.	

9.(10 pts.) Find the area between the curves $y = 2 - x^2$ and y = x bounded by the lines x = 0 and x = 2.

Name:		

10.(10 pts.) Find the average value of $f(x) = \cos(x) + x$ from x = 0 to $x = 2\pi$.

Name:	
T OILLO.	

11.(10 pts.)

- a. Estimate the integral $\int_0^4 \frac{1}{\sqrt{25-x^2}} dx$ using the **trapezoidal** rule with n = 4.
- b. Given that the fourth derivative of $\frac{1}{\sqrt{25-x^2}}$ is bounded in absolute value by 2.1 on the interval [0,4], give an upper bound for the error in using **Simpson's** rule with n = 410.

We are looking for formulas; in particular DO NOT attempt to evaluate the sums or do any arithmetic.

Name:		

12.(10 pts.) Find the volume of the solid which lies betwen the planes x = -1 and x = 1. The cross sections perpendicular to the *x*-axis are squares whose diagonals run from $y = -(1 - x^2)$ to $y = (1 - x^2)$.

Name:			

13.(10 pts.) Find the volume of the solid formed when the region bounded by the *x*-axis, the curve $y = \sqrt{\sin(x)}$ and $x = \pi$ is rotated around the *x*-axis.

١т		
N	amo	
	ame.	

Exam III November 30, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!						
PLE	PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!					
1.	(a)	(b)	(c)	(d)	(e)	
2.	(a)	(b)	(c)	(d)	(e)	
3.	(a)	(b)	(c)	(d)	(e)	
4.	(a)	(b)	(c)	(d)	(e)	
5.	(a)	(b)	(c)	(d)	(e)	
6.	(a)	(b)	(c)	(d)	(e)	

DO NOT WRITE I	N THIS BOX!	
Total multiple choice:		
7.		
8.		
9.		
10.		
11.		
12.		
13.		
Total:		

Name:

Instructor: Nollet

Multiple Choice

1.(5 pts.)

$$\int (x^2 + \sin(x)) dx =$$
(a) $\frac{x^3}{3} - \cos(x)$.
(b) $\frac{x^3}{3} + \cos(x)$.
(c) $\frac{x^3}{3} - \cos(x) + c$.
(d) $\frac{x^3}{3} + \cos(x) + c$.
(e) $2x + \sin(x) + c$.

2.(5 pts.) Suppose that $\int_{-1}^{2} f(x) dx = -2$ and $\int_{-1}^{5} f(x) dx = 7$. Evaluate $\int_{2}^{5} 2 f(x) dx$. Be careful with the arithmetic.

- (a) 5. (b) 9. (c) 10.
- (d) 18. (e) Cannot be determined.

Name	
Traine.	

3.(5 pts.) Suppose that f is continuous on [0, 10] and $\int_0^{10} f(x)dx = 50$. Which of the following must be true?

- (a) There exists a c in [0, 10] such that f(c) = 5.
- (b) There exists exactly one c in [0, 10] such that f(c) = 5.
- (c) There exists exactly one c in [0, 10] such that f(c) = 10.
- (d) There exists a c in [0, 10] such that f(c) = 50.
- (e) There exists a c in [0, 10] such that f'(c) = 5.

4.(5 pts.) Evaluate $\int_0^{\sqrt{2}} (\sqrt{4-x^2} - x) dx$ by interpreting it as an area that you know from elementary geometry.

- (a) 0. (b) $\frac{\pi}{2}$. (c) π .
- (d) 4π . (e) Cannot be determined.

5.(5 pts.) Find the derivative
$$\frac{dy}{dx}$$
 of the function $y = \int_{\pi}^{\sin(x)} t^2 dt$.
(a) $\pi x^2 \cos(x)$. (b) $2x \cos(x)$. (c) $t^2 \cos(t)$.

(d) $x^2 \sin(x)$. (e) $\sin^2(x) \cos(x)$.

6.(5 pts.)

$$\sum_{k=0}^{3} (2k+1) =$$

(a)
$$\int_0^3 (2x+1) dx$$
. (b) -14 (c) 10.

(d) 16. (e) 20.

Partial Credit 7.(10 pts.) Solve the initial value problem: $\frac{dy}{dx} = \sin^3(x)\cos(x)$; $y(\pi) = -3$.

Name:	
-------	--

8.(10 pts.) Integrate
$$\int_0^1 x^3 (x^4 - 1)^{10} dx$$
.
١T		
N	amo	
	ame.	

9.(10 pts.) Find the area between the curves $y = 2 - x^2$ and y = x bounded by the lines x = 0 and x = 2.

Name:		
Instructor:	Nollet	

10.(10 pts.) Find the average value of $f(x) = \cos(x) + x$ from x = 0 to $x = 2\pi$.

Name:	
T OILLO.	

11.(10 pts.)

- a. Estimate the integral $\int_0^4 \frac{1}{\sqrt{25-x^2}} dx$ using the **trapezoidal** rule with n = 4.
- b. Given that the fourth derivative of $\frac{1}{\sqrt{25-x^2}}$ is bounded in absolute value by 2.1 on the interval [0,4], give an upper bound for the error in using **Simpson's** rule with n = 410.

We are looking for formulas; in particular DO NOT attempt to evaluate the sums or do any arithmetic.

Name:		

12.(10 pts.) Find the volume of the solid which lies betwen the planes x = -1 and x = 1. The cross sections perpendicular to the *x*-axis are squares whose diagonals run from $y = -(1 - x^2)$ to $y = (1 - x^2)$.

Name:			

13.(10 pts.) Find the volume of the solid formed when the region bounded by the *x*-axis, the curve $y = \sqrt{\sin(x)}$ and $x = \pi$ is rotated around the *x*-axis.

×т		
N	amo	
. 1	ame.	

Instructo: Bullwinkle

Exam III November 30, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!						
PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!						
1.	(a)	(b)	(ullet)	(d)	(e)	
2.	(a)	(b)	(c)	(ullet)	(e)	
3.	(ullet)	(b)	(c)	(d)	(e)	
4.	(a)	(ullet)	(c)	(d)	(e)	
5.	(a)	(b)	(c)	(d)	(ullet)	
6.	(a)	(b)	(c)	(ullet)	(e)	

DO NOT WRITE IN THIS BOX!				
Total multiple choice:				
7.				
8.				
9.				
10.				
11.				
12.				
13.				
Total:				