Name: \qquad
Instructor: Dwyer
Exam III
November 30, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

1. (a)
(b)
(c)
(d)
(e)
2. (a)
(b)
(c)
(d)
(e)
3. (a)
(b)
(c)
(d)
(e)
4. (a)
(b)
(c)
(d)
(e)
5. (a)
(b)
(c)
(d)
(e)
6. (a)
(b)
(c)
(d)
(e)

DO NOT WRITE IN THIS BOX!

Total multiple choice: \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad

Total:

Name:
Instructor: Dwyer

Multiple Choice

1. (5 pts .)

$$
\int\left(x^{2}+\sin (x)\right) d x=
$$

(a) $\frac{x^{3}}{3}-\cos (x)$.
(b) $\frac{x^{3}}{3}+\cos (x)$.
(c) $\frac{x^{3}}{3}-\cos (x)+c$.
(d) $\frac{x^{3}}{3}+\cos (x)+c$.
(e) $\quad 2 x+\sin (x)+c$.
2. (5 pts.) Suppose that $\int_{-1}^{2} f(x) d x=-2$ and $\int_{-1}^{5} f(x) d x=7$. Evaluate $\int_{2}^{5} 2 f(x) d x$. Be careful with the arithmetic.
(a) 5 .
(b) 9 .
(c) 10 .
(d) 18 .
(e) Cannot be determined.

Name: \qquad
Instructor: D__ Dwyer
3. (5 pts.) Suppose that f is continuous on $[0,10]$ and $\int_{0}^{10} f(x) d x=50$. Which of the following must be true?
(a) There exists a c in $[0,10]$ such that $f(c)=5$.
(b) There exists exactly one c in $[0,10]$ such that $f(c)=5$.
(c) There exists exactly one c in $[0,10]$ such that $f(c)=10$.
(d) There exists a c in $[0,10]$ such that $f(c)=50$.
(e) There exists a c in $[0,10]$ such that $f^{\prime}(c)=5$.
4. (5 pts.) Evaluate $\int_{0}^{\sqrt{2}}\left(\sqrt{4-x^{2}}-x\right) d x$ by interpreting it as an area that you know from elementary geometry.
(a) 0 .
(b) $\frac{\pi}{2}$.
(c) π.
(d) 4π.
(e) Cannot be determined.

Name:
Instructor: __Dyer
5. (5 pts.) Find the derivative $\frac{d y}{d x}$ of the function $y=\int_{\pi}^{\sin (x)} t^{2} d t$.
(a) $\pi x^{2} \cos (x)$.
(b) $2 x \cos (x)$.
(c) $t^{2} \cos (t)$.
(d) $x^{2} \sin (x)$.
(e) $\sin ^{2}(x) \cos (x)$.
6. (5 pts .)

$$
\sum_{k=0}^{3}(2 k+1)=
$$

(a) $\int_{0}^{3}(2 x+1) d x$.
(b) -14
(c) 10 .
(d) 16 .
(e) 20 .

Name:
Instructor: __Dwer

Partial Credit

7. (10 pts.) Solve the initial value problem: $\frac{d y}{d x}=\sin ^{3}(x) \cos (x) ; y(\pi)=-3$.

Name:

Instructor: __Dyer
8. (10 pts.) Integrate $\int_{0}^{1} x^{3}\left(x^{4}-1\right)^{10} d x$.

Name:
Instructor: __Dwer
9. (10 pts.) Find the area between the curves $y=2-x^{2}$ and $y=x$ bounded by the lines $x=0$ and $x=2$.

Name:
Instructor: Dwyer
10. (10 pts.) Find the average value of $f(x)=\cos (x)+x$ from $x=0$ to $x=2 \pi$.

Name:
Instructor: __Dwer
11.(10 pts.)
a. Estimate the integral $\int_{0}^{4} \frac{1}{\sqrt{25-x^{2}}} d x$ using the trapezoidal rule with $n=4$.
b. Given that the fourth derivative of $\frac{1}{\sqrt{25-x^{2}}}$ is bounded in absolute value by 2.1 on the interval $[0,4]$, give an upper bound for the error in using Simpson's rule with $n=410$.

We are looking for formulas; in particular DO NOT attempt to evaluate the sums or do any arithmetic.

Name:
Instructor: Dwyer
12. (10 pts.) Find the volume of the solid which lies betwen the planes $x=-1$ and $x=1$. The cross sections perpendicular to the x-axis are squares whose diagonals run from $y=-\left(1-x^{2}\right)$ to $y=\left(1-x^{2}\right)$.

Name:
Instructor: Dwyer
13. (10 pts.) Find the volume of the solid formed when the region bounded by the x-axis, the curve $y=\sqrt{\sin (x)}$ and $x=\pi$ is rotated around the x-axis.

Name: \qquad
Instructor: Cholak

Exam III
November 30, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

1. (a)
(b)
(c)
(d)
(e)
2. (a)
(b)
(c)
(d)
(e)
3. (a)
(b)
(c)
(d)
(e)
4. (a)
(b)
(c)
(d)
(e)
5. (a)
(b)
(c)
(d)
(e)
6. (a)
(b)
(c)
(d)
(e)

DO NOT WRITE IN THIS BOX!

Total multiple choice: \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad

Total:

Name:
Instructor: Cholak

Multiple Choice

1. (5 pts.$)$

$$
\int\left(x^{2}+\sin (x)\right) d x=
$$

(a) $\frac{x^{3}}{3}-\cos (x)$.
(b) $\frac{x^{3}}{3}+\cos (x)$.
(c) $\frac{x^{3}}{3}-\cos (x)+c$.
(d) $\frac{x^{3}}{3}+\cos (x)+c$.
(e) $2 x+\sin (x)+c$.
2. (5 pts.) Suppose that $\int_{-1}^{2} f(x) d x=-2$ and $\int_{-1}^{5} f(x) d x=7$. Evaluate $\int_{2}^{5} 2 f(x) d x$. Be careful with the arithmetic.
(a) 5 .
(b) 9 .
(c) 10 .
(d) 18 .
(e) Cannot be determined.

Name: \qquad
Instructor: Cholak
3. (5 pts.) Suppose that f is continuous on $[0,10]$ and $\int_{0}^{10} f(x) d x=50$. Which of the following must be true?
(a) There exists a c in $[0,10]$ such that $f(c)=5$.
(b) There exists exactly one c in $[0,10]$ such that $f(c)=5$.
(c) There exists exactly one c in $[0,10]$ such that $f(c)=10$.
(d) There exists a c in $[0,10]$ such that $f(c)=50$.
(e) There exists a c in $[0,10]$ such that $f^{\prime}(c)=5$.
4. (5 pts.) Evaluate $\int_{0}^{\sqrt{2}}\left(\sqrt{4-x^{2}}-x\right) d x$ by interpreting it as an area that you know from elementary geometry.
(a) 0 .
(b) $\frac{\pi}{2}$.
(c) π.
(d) 4π.
(e) Cannot be determined.

Name:
Instructor: Cholak
5. (5 pts.) Find the derivative $\frac{d y}{d x}$ of the function $y=\int_{\pi}^{\sin (x)} t^{2} d t$.
(a) $\pi x^{2} \cos (x)$.
(b) $2 x \cos (x)$.
(c) $t^{2} \cos (t)$.
(d) $x^{2} \sin (x)$.
(e) $\sin ^{2}(x) \cos (x)$.
6. (5 pts .)

$$
\sum_{k=0}^{3}(2 k+1)=
$$

(a) $\int_{0}^{3}(2 x+1) d x$.
(b) -14
(c) 10 .
(d) 16 .
(e) 20 .

Name:
Instructor: Cholak

Partial Credit

7. (10 pts.) Solve the initial value problem: $\frac{d y}{d x}=\sin ^{3}(x) \cos (x) ; y(\pi)=-3$.

Name:

Instructor: Cholak
8. (10 pts.) Integrate $\int_{0}^{1} x^{3}\left(x^{4}-1\right)^{10} d x$.

Name:
Instructor: Cholak
9. (10 pts.) Find the area between the curves $y=2-x^{2}$ and $y=x$ bounded by the lines $x=0$ and $x=2$.

Name:
Instructor: Cholak
10. (10 pts.) Find the average value of $f(x)=\cos (x)+x$ from $x=0$ to $x=2 \pi$.

Name:
Instructor: Cholak
11.(10 pts.)
a. Estimate the integral $\int_{0}^{4} \frac{1}{\sqrt{25-x^{2}}} d x$ using the trapezoidal rule with $n=4$.
b. Given that the fourth derivative of $\frac{1}{\sqrt{25-x^{2}}}$ is bounded in absolute value by 2.1 on the interval $[0,4]$, give an upper bound for the error in using Simpson's rule with $n=410$.

We are looking for formulas; in particular DO NOT attempt to evaluate the sums or do any arithmetic.

Name:
Instructor: Cholak
12. (10 pts.) Find the volume of the solid which lies betwen the planes $x=-1$ and $x=1$. The cross sections perpendicular to the x-axis are squares whose diagonals run from $y=-\left(1-x^{2}\right)$ to $y=\left(1-x^{2}\right)$.

Name:
Instructor: Cholak
13. (10 pts.) Find the volume of the solid formed when the region bounded by the x-axis, the curve $y=\sqrt{\sin (x)}$ and $x=\pi$ is rotated around the x-axis.

Name: \qquad
Instructor: Taylor
Exam III
November 30, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

1. (a)
(b)
(c)
(d)
(e)
2. (a)
(b)
(c)
(d)
(e)
3. (a)
(b)
(c)
(d)
(e)
4. (a)
(b)
(c)
(d)
(e)
5. (a)
(b)
(c)
(d)
(e)
6. (a)
(b)
(c)
(d)
(e)

DO NOT WRITE IN THIS BOX!

Total multiple choice: \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad

Total:

Name:
Instructor: Taylor

Multiple Choice

1.(5 pts.)

$$
\int\left(x^{2}+\sin (x)\right) d x=
$$

(a) $\frac{x^{3}}{3}-\cos (x)$.
(b) $\frac{x^{3}}{3}+\cos (x)$.
(c) $\frac{x^{3}}{3}-\cos (x)+c$.
(d) $\frac{x^{3}}{3}+\cos (x)+c$.
(e) $\quad 2 x+\sin (x)+c$.
2. (5 pts.) Suppose that $\int_{-1}^{2} f(x) d x=-2$ and $\int_{-1}^{5} f(x) d x=7$. Evaluate $\int_{2}^{5} 2 f(x) d x$. Be careful with the arithmetic.
(a) 5 .
(b) 9 .
(c) 10 .
(d) 18 .
(e) Cannot be determined.

Name: \qquad
Instructor: Taylor
3. (5 pts.) Suppose that f is continuous on $[0,10]$ and $\int_{0}^{10} f(x) d x=50$. Which of the following must be true?
(a) There exists a c in $[0,10]$ such that $f(c)=5$.
(b) There exists exactly one c in $[0,10]$ such that $f(c)=5$.
(c) There exists exactly one c in $[0,10]$ such that $f(c)=10$.
(d) There exists a c in $[0,10]$ such that $f(c)=50$.
(e) There exists a c in $[0,10]$ such that $f^{\prime}(c)=5$.
4. (5 pts.) Evaluate $\int_{0}^{\sqrt{2}}\left(\sqrt{4-x^{2}}-x\right) d x$ by interpreting it as an area that you know from elementary geometry.
(a) 0 .
(b) $\frac{\pi}{2}$.
(c) π.
(d) 4π.
(e) Cannot be determined.

Name:
Instructor: Taylor
5. (5 pts.) Find the derivative $\frac{d y}{d x}$ of the function $y=\int_{\pi}^{\sin (x)} t^{2} d t$.
(a) $\pi x^{2} \cos (x)$.
(b) $2 x \cos (x)$.
(c) $t^{2} \cos (t)$.
(d) $x^{2} \sin (x)$.
(e) $\sin ^{2}(x) \cos (x)$.
6. (5 pts .)

$$
\sum_{k=0}^{3}(2 k+1)=
$$

(a) $\int_{0}^{3}(2 x+1) d x$.
(b) -14
(c) 10 .
(d) 16 .
(e) 20 .

Name:
Instructor: Taylor

Partial Credit

7. (10 pts.) Solve the initial value problem: $\frac{d y}{d x}=\sin ^{3}(x) \cos (x) ; y(\pi)=-3$.

Name:

Instructor: Taylor
8. (10 pts.) Integrate $\int_{0}^{1} x^{3}\left(x^{4}-1\right)^{10} d x$.

Name:
Instructor: Taylor
9. (10 pts.) Find the area between the curves $y=2-x^{2}$ and $y=x$ bounded by the lines $x=0$ and $x=2$.

Name:
Instructor: Taylor
10. (10 pts.) Find the average value of $f(x)=\cos (x)+x$ from $x=0$ to $x=2 \pi$.

Name:
Instructor: __Taylor
11.(10 pts.)
a. Estimate the integral $\int_{0}^{4} \frac{1}{\sqrt{25-x^{2}}} d x$ using the trapezoidal rule with $n=4$.
b. Given that the fourth derivative of $\frac{1}{\sqrt{25-x^{2}}}$ is bounded in absolute value by 2.1 on the interval $[0,4]$, give an upper bound for the error in using Simpson's rule with $n=410$.

We are looking for formulas; in particular DO NOT attempt to evaluate the sums or do any arithmetic.

Name:
Instructor: Taylor
12. (10 pts.) Find the volume of the solid which lies betwen the planes $x=-1$ and $x=1$. The cross sections perpendicular to the x-axis are squares whose diagonals run from $y=-\left(1-x^{2}\right)$ to $y=\left(1-x^{2}\right)$.

Name:
Instructor: Taylor
13. (10 pts.) Find the volume of the solid formed when the region bounded by the x-axis, the curve $y=\sqrt{\sin (x)}$ and $x=\pi$ is rotated around the x-axis.

Name: \qquad
Instructor: Wong
Exam III
November 30, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

1. (a)
(b)
(c)
(d)
(e)
2. (a)
(b)
(c)
(d)
(e)
3. (a)
(b)
(c)
(d)
(e)
4. (a)
(b)
(c)
(d)
(e)
5. (a)
(b)
(c)
(d)
(e)
6. (a)
(b)
(c)
(d)
(e)

DO NOT WRITE IN THIS BOX!

Total multiple choice: \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad

Total:

Name:
Instructor: Wong

Multiple Choice

1. (5 pts .)

$$
\int\left(x^{2}+\sin (x)\right) d x=
$$

(a) $\frac{x^{3}}{3}-\cos (x)$.
(b) $\frac{x^{3}}{3}+\cos (x)$.
(c) $\frac{x^{3}}{3}-\cos (x)+c$.
(d) $\frac{x^{3}}{3}+\cos (x)+c$.
(e) $2 x+\sin (x)+c$.
2. (5 pts.) Suppose that $\int_{-1}^{2} f(x) d x=-2$ and $\int_{-1}^{5} f(x) d x=7$. Evaluate $\int_{2}^{5} 2 f(x) d x$. Be careful with the arithmetic.
(a) 5 .
(b) 9 .
(c) 10 .
(d) 18 .
(e) Cannot be determined.

Name: \qquad
Instructor: Wong
3. (5 pts.) Suppose that f is continuous on $[0,10]$ and $\int_{0}^{10} f(x) d x=50$. Which of the following must be true?
(a) There exists a c in $[0,10]$ such that $f(c)=5$.
(b) There exists exactly one c in $[0,10]$ such that $f(c)=5$.
(c) There exists exactly one c in $[0,10]$ such that $f(c)=10$.
(d) There exists a c in $[0,10]$ such that $f(c)=50$.
(e) There exists a c in $[0,10]$ such that $f^{\prime}(c)=5$.
4. (5 pts.) Evaluate $\int_{0}^{\sqrt{2}}\left(\sqrt{4-x^{2}}-x\right) d x$ by interpreting it as an area that you know from elementary geometry.
(a) 0 .
(b) $\frac{\pi}{2}$.
(c) π.
(d) 4π.
(e) Cannot be determined.

Name:
Instructor: Wong
5. (5 pts.) Find the derivative $\frac{d y}{d x}$ of the function $y=\int_{\pi}^{\sin (x)} t^{2} d t$.
(a) $\pi x^{2} \cos (x)$.
(b) $2 x \cos (x)$.
(c) $t^{2} \cos (t)$.
(d) $x^{2} \sin (x)$.
(e) $\sin ^{2}(x) \cos (x)$.
6. (5 pts .)

$$
\sum_{k=0}^{3}(2 k+1)=
$$

(a) $\int_{0}^{3}(2 x+1) d x$.
(b) -14
(c) 10 .
(d) 16 .
(e) 20 .

Name:
Instructor: Wong

Partial Credit

7. (10 pts.) Solve the initial value problem: $\frac{d y}{d x}=\sin ^{3}(x) \cos (x) ; y(\pi)=-3$.

Name:

Instructor: Wong
8. (10 pts.) Integrate $\int_{0}^{1} x^{3}\left(x^{4}-1\right)^{10} d x$.

Name:
Instructor: Wong
9. (10 pts.) Find the area between the curves $y=2-x^{2}$ and $y=x$ bounded by the lines $x=0$ and $x=2$.

Name:
Instructor: Wong
10. (10 pts.) Find the average value of $f(x)=\cos (x)+x$ from $x=0$ to $x=2 \pi$.

Name:
Instructor: Wong
11.(10 pts.)
a. Estimate the integral $\int_{0}^{4} \frac{1}{\sqrt{25-x^{2}}} d x$ using the trapezoidal rule with $n=4$.
b. Given that the fourth derivative of $\frac{1}{\sqrt{25-x^{2}}}$ is bounded in absolute value by 2.1 on the interval $[0,4]$, give an upper bound for the error in using Simpson's rule with $n=410$.

We are looking for formulas; in particular DO NOT attempt to evaluate the sums or do any arithmetic.

Name:
Instructor: Wong
12. (10 pts.) Find the volume of the solid which lies betwen the planes $x=-1$ and $x=1$. The cross sections perpendicular to the x-axis are squares whose diagonals run from $y=-\left(1-x^{2}\right)$ to $y=\left(1-x^{2}\right)$.

Name:
Instructor: Wong
13. (10 pts.) Find the volume of the solid formed when the region bounded by the x-axis, the curve $y=\sqrt{\sin (x)}$ and $x=\pi$ is rotated around the x-axis.

Name: \qquad
Instructor: Cao

Exam III
November 30, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

1. (a)
(b)
(c)
(d)
(e)
2. (a)
(b)
(c)
(d)
(e)
3. (a)
(b)
(c)
(d)
(e)
4. (a)
(b)
(c)
(d)
(e)
5. (a)
(b)
(c)
(d)
(e)
6. (a)
(b)
(c)
(d)
(e)

DO NOT WRITE IN THIS BOX!

Total multiple choice: \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad

Total:

Name:
Instructor: Cao

Multiple Choice

1. (5 pts .)

$$
\int\left(x^{2}+\sin (x)\right) d x=
$$

(a) $\frac{x^{3}}{3}-\cos (x)$.
(b) $\frac{x^{3}}{3}+\cos (x)$.
(c) $\frac{x^{3}}{3}-\cos (x)+c$.
(d) $\frac{x^{3}}{3}+\cos (x)+c$.
(e) $2 x+\sin (x)+c$.
2. (5 pts.) Suppose that $\int_{-1}^{2} f(x) d x=-2$ and $\int_{-1}^{5} f(x) d x=7$. Evaluate $\int_{2}^{5} 2 f(x) d x$. Be careful with the arithmetic.
(a) 5 .
(b) 9 .
(c) 10 .
(d) 18 .
(e) Cannot be determined.

Name: \qquad
Instructor: Cao
3. (5 pts.) Suppose that f is continuous on $[0,10]$ and $\int_{0}^{10} f(x) d x=50$. Which of the following must be true?
(a) There exists a c in $[0,10]$ such that $f(c)=5$.
(b) There exists exactly one c in $[0,10]$ such that $f(c)=5$.
(c) There exists exactly one c in $[0,10]$ such that $f(c)=10$.
(d) There exists a c in $[0,10]$ such that $f(c)=50$.
(e) There exists a c in $[0,10]$ such that $f^{\prime}(c)=5$.
4. (5 pts.) Evaluate $\int_{0}^{\sqrt{2}}\left(\sqrt{4-x^{2}}-x\right) d x$ by interpreting it as an area that you know from elementary geometry.
(a) 0 .
(b) $\frac{\pi}{2}$.
(c) π.
(d) 4π.
(e) Cannot be determined.

Name:
Instructor: Cao
5. (5 pts.) Find the derivative $\frac{d y}{d x}$ of the function $y=\int_{\pi}^{\sin (x)} t^{2} d t$.
(a) $\pi x^{2} \cos (x)$.
(b) $2 x \cos (x)$.
(c) $t^{2} \cos (t)$.
(d) $x^{2} \sin (x)$.
(e) $\sin ^{2}(x) \cos (x)$.
6. (5 pts .)

$$
\sum_{k=0}^{3}(2 k+1)=
$$

(a) $\int_{0}^{3}(2 x+1) d x$.
(b) -14
(c) 10 .
(d) 16 .
(e) 20 .

Name:
Instructor: Cao

Partial Credit

7. (10 pts.) Solve the initial value problem: $\frac{d y}{d x}=\sin ^{3}(x) \cos (x) ; y(\pi)=-3$.

Name:

Instructor: Cao
8. (10 pts.) Integrate $\int_{0}^{1} x^{3}\left(x^{4}-1\right)^{10} d x$.

Name:
Instructor: Cao
9. (10 pts.) Find the area between the curves $y=2-x^{2}$ and $y=x$ bounded by the lines $x=0$ and $x=2$.

Name:
Instructor: Cao
10. (10 pts.) Find the average value of $f(x)=\cos (x)+x$ from $x=0$ to $x=2 \pi$.

Name:
Instructor: Cao
11.(10 pts.)
a. Estimate the integral $\int_{0}^{4} \frac{1}{\sqrt{25-x^{2}}} d x$ using the trapezoidal rule with $n=4$.
b. Given that the fourth derivative of $\frac{1}{\sqrt{25-x^{2}}}$ is bounded in absolute value by 2.1 on the interval $[0,4]$, give an upper bound for the error in using Simpson's rule with $n=410$.

We are looking for formulas; in particular DO NOT attempt to evaluate the sums or do any arithmetic.

Name:
Instructor: Cao
12. (10 pts.) Find the volume of the solid which lies betwen the planes $x=-1$ and $x=1$. The cross sections perpendicular to the x-axis are squares whose diagonals run from $y=-\left(1-x^{2}\right)$ to $y=\left(1-x^{2}\right)$.

Name:
Instructor: Cao
13. (10 pts.) Find the volume of the solid formed when the region bounded by the x-axis, the curve $y=\sqrt{\sin (x)}$ and $x=\pi$ is rotated around the x-axis.

Name: \qquad
Instructor: Jarre

Exam III
November 30, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

1. (a)
(b)
(c)
(d)
(e)
2. (a)
(b)
(c)
(d)
(e)
3. (a)
(b)
(c)
(d)
(e)
4. (a)
(b)
(c)
(d)
(e)
5. (a)
(b)
(c)
(d)
(e)
6. (a)
(b)
(c)
(d)
(e)

DO NOT WRITE IN THIS BOX!

Total multiple choice: \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad

Total:

Name:
Instructor: Jarre

Multiple Choice

1. (5 pts .)

$$
\int\left(x^{2}+\sin (x)\right) d x=
$$

(a) $\frac{x^{3}}{3}-\cos (x)$.
(b) $\frac{x^{3}}{3}+\cos (x)$.
(c) $\frac{x^{3}}{3}-\cos (x)+c$.
(d) $\frac{x^{3}}{3}+\cos (x)+c$.
(e) $\quad 2 x+\sin (x)+c$.
2. (5 pts.) Suppose that $\int_{-1}^{2} f(x) d x=-2$ and $\int_{-1}^{5} f(x) d x=7$. Evaluate $\int_{2}^{5} 2 f(x) d x$. Be careful with the arithmetic.
(a) 5 .
(b) 9 .
(c) 10 .
(d) 18 .
(e) Cannot be determined.

Name: \qquad
Instructor: Jarre
3. (5 pts.) Suppose that f is continuous on $[0,10]$ and $\int_{0}^{10} f(x) d x=50$. Which of the following must be true?
(a) There exists a c in $[0,10]$ such that $f(c)=5$.
(b) There exists exactly one c in $[0,10]$ such that $f(c)=5$.
(c) There exists exactly one c in $[0,10]$ such that $f(c)=10$.
(d) There exists a c in $[0,10]$ such that $f(c)=50$.
(e) There exists a c in $[0,10]$ such that $f^{\prime}(c)=5$.
4. (5 pts.) Evaluate $\int_{0}^{\sqrt{2}}\left(\sqrt{4-x^{2}}-x\right) d x$ by interpreting it as an area that you know from elementary geometry.
(a) 0 .
(b) $\frac{\pi}{2}$.
(c) π.
(d) 4π.
(e) Cannot be determined.

Name:
Instructor: Jarre
5. (5 pts.) Find the derivative $\frac{d y}{d x}$ of the function $y=\int_{\pi}^{\sin (x)} t^{2} d t$.
(a) $\pi x^{2} \cos (x)$.
(b) $2 x \cos (x)$.
(c) $t^{2} \cos (t)$.
(d) $x^{2} \sin (x)$.
(e) $\sin ^{2}(x) \cos (x)$.
6. (5 pts .)

$$
\sum_{k=0}^{3}(2 k+1)=
$$

(a) $\int_{0}^{3}(2 x+1) d x$.
(b) -14
(c) 10 .
(d) 16 .
(e) 20 .

Name:
Instructor: Jarre

Partial Credit

7. (10 pts.) Solve the initial value problem: $\frac{d y}{d x}=\sin ^{3}(x) \cos (x) ; y(\pi)=-3$.

Name:
Instructor: Jarre
8. (10 pts.) Integrate $\int_{0}^{1} x^{3}\left(x^{4}-1\right)^{10} d x$.

Name:
Instructor: Jarre
9. (10 pts.) Find the area between the curves $y=2-x^{2}$ and $y=x$ bounded by the lines $x=0$ and $x=2$.

Name:
Instructor: Jarre
10. (10 pts.) Find the average value of $f(x)=\cos (x)+x$ from $x=0$ to $x=2 \pi$.

Name:
Instructor: Jarre
11.(10 pts.)
a. Estimate the integral $\int_{0}^{4} \frac{1}{\sqrt{25-x^{2}}} d x$ using the trapezoidal rule with $n=4$.
b. Given that the fourth derivative of $\frac{1}{\sqrt{25-x^{2}}}$ is bounded in absolute value by 2.1 on the interval $[0,4]$, give an upper bound for the error in using Simpson's rule with $n=410$.

We are looking for formulas; in particular DO NOT attempt to evaluate the sums or do any arithmetic.

Name:
Instructor: Jarre
12. (10 pts.) Find the volume of the solid which lies betwen the planes $x=-1$ and $x=1$. The cross sections perpendicular to the x-axis are squares whose diagonals run from $y=-\left(1-x^{2}\right)$ to $y=\left(1-x^{2}\right)$.

Name:
Instructor: Jarre
13. (10 pts.) Find the volume of the solid formed when the region bounded by the x-axis, the curve $y=\sqrt{\sin (x)}$ and $x=\pi$ is rotated around the x-axis.

Name: \qquad
Instructor: Nollet

Exam III
November 30, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

1. (a)
(b)
(c)
(d)
(e)
2. (a)
(b)
(c)
(d)
(e)
3. (a)
(b)
(c)
(d)
(e)
4. (a)
(b)
(c)
(d)
(e)
5. (a)
(b)
(c)
(d)
(e)
6. (a)
(b)
(c)
(d)
(e)

DO NOT WRITE IN THIS BOX!

Total multiple choice: \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad

Total:

Name:
Instructor: Nollet

Multiple Choice

1. (5 pts .)

$$
\int\left(x^{2}+\sin (x)\right) d x=
$$

(a) $\frac{x^{3}}{3}-\cos (x)$.
(b) $\frac{x^{3}}{3}+\cos (x)$.
(c) $\frac{x^{3}}{3}-\cos (x)+c$.
(d) $\frac{x^{3}}{3}+\cos (x)+c$.
(e) $\quad 2 x+\sin (x)+c$.
2. (5 pts.) Suppose that $\int_{-1}^{2} f(x) d x=-2$ and $\int_{-1}^{5} f(x) d x=7$. Evaluate $\int_{2}^{5} 2 f(x) d x$. Be careful with the arithmetic.
(a) 5 .
(b) 9 .
(c) 10 .
(d) 18 .
(e) Cannot be determined.

Name: \qquad
Instructor: Nollet
3. (5 pts.) Suppose that f is continuous on $[0,10]$ and $\int_{0}^{10} f(x) d x=50$. Which of the following must be true?
(a) There exists a c in $[0,10]$ such that $f(c)=5$.
(b) There exists exactly one c in $[0,10]$ such that $f(c)=5$.
(c) There exists exactly one c in $[0,10]$ such that $f(c)=10$.
(d) There exists a c in $[0,10]$ such that $f(c)=50$.
(e) There exists a c in $[0,10]$ such that $f^{\prime}(c)=5$.
4. (5 pts.) Evaluate $\int_{0}^{\sqrt{2}}\left(\sqrt{4-x^{2}}-x\right) d x$ by interpreting it as an area that you know from elementary geometry.
(a) 0 .
(b) $\frac{\pi}{2}$.
(c) π.
(d) 4π.
(e) Cannot be determined.

Name:
Instructor: Nollet
5. (5 pts.) Find the derivative $\frac{d y}{d x}$ of the function $y=\int_{\pi}^{\sin (x)} t^{2} d t$.
(a) $\pi x^{2} \cos (x)$.
(b) $2 x \cos (x)$.
(c) $t^{2} \cos (t)$.
(d) $x^{2} \sin (x)$.
(e) $\sin ^{2}(x) \cos (x)$.
6. (5 pts .)

$$
\sum_{k=0}^{3}(2 k+1)=
$$

(a) $\int_{0}^{3}(2 x+1) d x$.
(b) -14
(c) 10 .
(d) 16 .
(e) 20 .

Name:
Instructor: Nollet

Partial Credit

7. (10 pts.) Solve the initial value problem: $\frac{d y}{d x}=\sin ^{3}(x) \cos (x) ; y(\pi)=-3$.

Name:

Instructor: Nollet
8. (10 pts.) Integrate $\int_{0}^{1} x^{3}\left(x^{4}-1\right)^{10} d x$.

Name:
Instructor: Nollet
9. (10 pts.) Find the area between the curves $y=2-x^{2}$ and $y=x$ bounded by the lines $x=0$ and $x=2$.

Name:
Instructor: Nollet
10. (10 pts.) Find the average value of $f(x)=\cos (x)+x$ from $x=0$ to $x=2 \pi$.

Name:
Instructor: Nollet
11.(10 pts.)
a. Estimate the integral $\int_{0}^{4} \frac{1}{\sqrt{25-x^{2}}} d x$ using the trapezoidal rule with $n=4$.
b. Given that the fourth derivative of $\frac{1}{\sqrt{25-x^{2}}}$ is bounded in absolute value by 2.1 on the interval $[0,4]$, give an upper bound for the error in using Simpson's rule with $n=410$.

We are looking for formulas; in particular DO NOT attempt to evaluate the sums or do any arithmetic.

Name:
Instructor: Nollet
12. (10 pts.) Find the volume of the solid which lies betwen the planes $x=-1$ and $x=1$. The cross sections perpendicular to the x-axis are squares whose diagonals run from $y=-\left(1-x^{2}\right)$ to $y=\left(1-x^{2}\right)$.

Name:
Instructor: Nollet
13. (10 pts.) Find the volume of the solid formed when the region bounded by the x-axis, the curve $y=\sqrt{\sin (x)}$ and $x=\pi$ is rotated around the x-axis.

Name: \qquad
Instructo: Bullwinkle

Exam III
November 30, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

1. (a)
(b)
(•)
(d)
(e)
2. (a)
(b)
(c)
(•)
(e)
3. (•)
(b)
(c)
(d)
(e)
4. (a)
(•)
(c)
(d)
(e)
5. (a)
(b)
(c)
(d)
(•)
6. (a)
(b)
(c)
(•)
(e)

DO NOT WRITE IN THIS BOX!

Total multiple choice: \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad

Total:

