am th		ame is on eve			ecome detache		
e un	iat you na	ve all 10 pag Go	es of the tes od Luck!	τ.			
·LE	EASE MA	RK YOUR A	ANSWERS V	WITH AN X	, not a circle!		
	(a)	(b)	(c)	(d)	(e)		
	(a)	(b)	(c)	(d)	(e)		
	(a)	(b)	(c)	(d)	(e)		
Į.	(a)	(b)	(c)	(d)	(e)		
	(a)	(b)	(c)	(d)	(e)		
	(a)	(b)	(c)	(d)	(e)		
.	(a)	(b)	(c)	(d)	(e)		
•	(a)	(b)	(c)	(d)	(e)		
			DO NOT V	VRITE IN T	HIS BOX!		
		Tota	Total multiple choice:				
			9				
				10.			
				11.			
				11.			
				12			
				13.			

Total:

Multiple Choice

1.(5 pts.) Evaluate

$$\int y^2 \cos \frac{y^3}{3} \, dy \; .$$

The answer is:

- (a) $\sin \frac{y^3}{3} + C$ (b) $\frac{y^3}{3} \sin \frac{y^3}{3} + C$ (c) $3 \sin \frac{y^3}{3} + C$ (d) $y^2 \sin \frac{y^3}{3} + C$

- (e) $y^2 \sin \frac{y^4}{12} + C$
- **2.**(5 pts.) Given the following values, what is the value of $\int_{1}^{2} f(x) dx$?

$$\int_{1}^{10} f(x) dx = 10; \int_{4}^{10} f(x) dx = 5; \int_{2}^{4} f(x) dx = 6.$$

1 (a)

- 21 (b)
- (c) -1
- (d) 0
- The answer can not be determined from the data. (e)
- **3.**(5 pts.) Let $f(x) = \int_0^{1+x^2} \frac{1}{t^3+1} dt$. Evaluate f'(2).
- (a) $\frac{2}{9}$ (b) $\frac{1}{126}$ (c) $\frac{5}{9}$ (d) $\frac{1}{9}$

- **4.**(5 pts.) The equation $x^4 + x 1 = 0$ has exactly one positive solution, which is near 1. Which answer below is the result of one iteration of Newton's method applied to this equation with 1 as the starting point?

- (b) $\frac{4}{5}$ (c) 1 (d) $\frac{5}{4}$ (e) $\frac{4}{3}$

5.(5 pts.) Which of the following is a correct solution of the initial value problem

$$\frac{dy}{dx} = \frac{1}{3 + \sin x} \;, \quad y(1) = 2$$

- (a) $y(x) = 1 + \int_{1}^{x} \frac{1}{3 + \sin t} dt$
- (b) $y(x) = 2 + \int_{1}^{x} \frac{1}{3 + \sin t} dt$
- (c) $y(x) = 2 + \int_{1}^{\frac{1}{3+\sin x}} t \, dt$
- (d) $y(x) = 1 + \int_{2}^{x} \frac{1}{3 + \sin t} dt$
- (e) $y(x) = 1 + \int_{1}^{x^2} \frac{1}{3 + \sin t} dt$

6.(5 pts.) Evaluate

$$\sum_{k=1}^{100} k^{-1/2} - \sum_{k=1}^{99} k^{-1/2}$$

(a) $99^{-1/2}$

- (b) $100^{-1/2} 99^{-1/2}$
- (c) $\int_{1}^{100} x^{-1/2} dx \int_{1}^{99} x^{-1/2} dx$
- Cannot be determined without knowledge of the value of k. (e)

7.(5 pts.)

$$\int_0^{\pi/2} (1 - \sin^2 x) \cos x \, dx = ?$$

- (a) $\frac{\pi}{2} \frac{\pi^3}{24}$ (b) 1 (c) $\frac{\pi}{2} + \frac{\pi^3}{24}$ (d) $\frac{2}{3}$

8.(5 pts.) Let $f(x) = 1/\cos(x) = \sec(x)$ and consider the definite integral $\int_0^1 f(x) dx$? Divide the interval of integration into 5 equal pieces. Which sum below is the Riemann sum for this partition where the point in each interval is a point at which f(x) obtains its minimum in that interval.

p8.eps

(a)
$$\frac{1}{10} \left(\sec(0) + 2\sec(\frac{1}{5}) + 2\sec(\frac{2}{5}) + 2\sec(\frac{3}{5}) + 2\sec(\frac{4}{5}) + \sec(1) \right)$$

(b)
$$\frac{1}{2} \left(\sec(0) + \sec(1) \right)$$

(c)
$$\frac{1}{5} \left(\sec(0) + \sec(\frac{1}{5}) + \sec(\frac{2}{5}) + \sec(\frac{3}{5}) + \sec(\frac{4}{5}) \right)$$

$$(d)$$
 $sec(1)$

(e)
$$\frac{1}{5} \left(\sec\left(\frac{1}{5}\right) + \sec\left(\frac{2}{5}\right) + \sec\left(\frac{3}{5}\right) + \sec\left(\frac{4}{5}\right) + \sec\left(1\right) \right)$$

Partial Credit

9.(12 pts.) Write down the formula for Simpson's Rule applied to the integral

$$\int_0^6 \frac{x^2 + 1}{x^4 + 1} \, dx$$

where you have divided the interval into 6 pieces.

No credit will be given for simplifying your answer, but points may be deducted for blatant arithmetical errors if you attempt to simplify. (The *style* of the answers for problem 8 is what is wanted here.)

10.(12 pts.) The curves $y = \sin x$ and $y = \cos x$ enclose an area as given in the figure. Set up a definite integral which calculates the area of this region.

No credit will be given for evaluating your integral but points may be deducted for especially "creative" attempts.

$$=800$$

p10.eps

11.(12 pts.) Remember that an error estimate for the trapezoidal rule is given by

$$\left| \int_{a}^{b} f(x) dx - T \right| \leq \frac{b-a}{12} h^{2} \left(\max_{x \in [a,b]} \left| f''(x) \right| \right) \qquad ; \qquad h = \frac{b-a}{n}$$

where T is the formula you are expected to know from the Trapezoid Rule and n is the number of subintervals.

Assume you want to approximate $\int_0^2 \sin(x^2) dx$ using the trapezoidal rule and will tolerate an error of at most 0.1.

- (a) Calculate the second derivative (you should know of which expression) and show that its absolute value is ≤ 18 .
- (b) Use the formula (*) above with $\max_{x \in [a,b]} |f''(x)| \le 18$ from (a) to find the smallest number n so that the resulting estimate of the error is less than 0.1.

12.(12 pts.) Out of a solid ball of radius R, a cylindrical hole of radius r (r < R) has been drilled centrally (i.e., the axis of the cylinder passes through the center of the ball). Set up a definite integral, in terms of R and r, for the volume of the remaining body.

No credit will be given for evaluating your integral but points may be deducted for especially "creative" attempts.

p12.eps

$$=500$$

jdfig.eps

13.(12 pts.) The triangle whose corners have coordinates (0,0), (1,3), (3,0) is rotated around the x-axis to produce a solid of revolution.

- (a) Set up a definite integral which gives the volume of this solid.
- (b) Evaluate your integral.

Hint: The line $x = \frac{y}{3}$ goes through (0,0) and (1,3) while the line $x = -\frac{2y}{3} + 3$ goes through (3,0) and (1,3)

=1600

p13.eps

		N	ame: Al	NSWERS				
Instructor: ANSWERS								
			xam III nber 28, 2000)				
cula kam e th	itors. lasts for d at your n	one hour.	ery page in c	ase pages be	ck is to be you			
	v		ood Luck!					
PLE	EASE MA	RK YOUR A	ANSWERS V	VITH AN X	, not a circle!			
1.	(ullet)	(b)	(c)	(d)	(e)			
2.	(a)	(b)	(ullet)	(d)	(e)			
3.	(a)	(b)	(c)	(d)	(ullet)			
4.	(a)	(ullet)	(c)	(d)	(e)			
5.	(a)	(ullet)	(c)	(d)	(e)			
6.	(a)	(b)	(c)	(ullet)	(e)			
7.	(a)	(b)	(c)	(ullet)	(e)			
8.	(a)	(b)	(ullet)	(d)	(e)			
			DO NOT W	RITE IN T	HIS BOX!			
		Tota	Total multiple choice:					
				9				
				10				
			11					
				12				

13.

Total: