Exam I

September 25, 2001
11. By definition $f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{\sqrt{1+h}-\sqrt{1}}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{1+h}-\sqrt{1}}{h} \cdot \frac{\sqrt{1+h}+\sqrt{1}}{\sqrt{1+h}+\sqrt{1}}$
$=\lim _{h \rightarrow 0} \frac{{\sqrt{1+h^{2}}-\sqrt{1}^{2}}_{h}^{h} \cdot \frac{1}{\sqrt{1+h}+\sqrt{1}}=\lim _{h \rightarrow 0} \frac{1+h-1}{h} \cdot \frac{1}{\sqrt{1+h}+\sqrt{1}} \lim _{h \rightarrow 0} \frac{h}{h} \cdot \frac{1}{\sqrt{1+h}+\sqrt{1}}}{1}$
$=\lim _{h \rightarrow 0} \frac{1}{\sqrt{1+h}+\sqrt{1}}=\frac{1}{\sqrt{1}+\sqrt{1}}=\frac{1}{2}$, where the next to the last equality follows since $\sqrt{x+1}$ is continuous at 0 .

OR
By definition $f^{\prime}(1)=\lim _{x \rightarrow 1} \frac{\sqrt{x}-\sqrt{1}}{x-1}=\lim _{x \rightarrow 1} \frac{\sqrt{x}-\sqrt{1}}{x-1} \cdot \frac{\sqrt{x}+\sqrt{1}}{\sqrt{x}+\sqrt{1}}$
$=\lim _{x \rightarrow 1} \frac{\sqrt{x}^{2}-\sqrt{1}^{2}}{x-1} \cdot \frac{1}{\sqrt{x}+\sqrt{1}}=\lim _{x \rightarrow 1} \frac{x-1}{x-1} \cdot \frac{1}{\sqrt{x}+\sqrt{1}} \lim _{x \rightarrow 1} \frac{x-1}{x-1} \cdot \frac{1}{\sqrt{x}+\sqrt{1}}$
$=\lim _{x \rightarrow 1} \frac{1}{\sqrt{x}+\sqrt{1}}=\frac{1}{\sqrt{1}+\sqrt{1}}=\frac{1}{2}$, where the next to the last equality follows since \sqrt{x} is continuous at 0 .
12.
a. Since $s=90 t^{1 / 2}-25 t^{3 / 2}+3 t^{5 / 2}, v=90 \cdot \frac{1}{2} t^{-1 / 2}-25 \cdot \frac{3}{2} t^{1 / 2}+3 \cdot \frac{5}{2} t^{3 / 2}$ or $v=\frac{90}{2} t^{-1 / 2}-\frac{75}{2} t^{1 / 2}+\frac{15}{2} t^{3 / 2}=\frac{15}{2} t^{-1 / 2}\left(6-5 t+t^{2}\right)$. Hence $v(1)=\frac{15}{2} \cdot(6-5+1)=15$.
b. We must solve $v(t)=0$ or $0=6-5 t+t^{2}=(t-3)(t-2)$ so $t=2$ and $t=3$.
c. Since there are no zeros of the velocity function between 0 and 1 the distance travelled is equal to the displacement which is $s(1)-s(0)=(90-25+3)-(0)=68$.
13. We know $f(x)$ is continuous at any point $x \neq 1$ since there the function is given by a polynomial and polynomials are continuous. By the same reasoning, it is easy to calculate one sided limits at $x=1: \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} x^{3}+c x=1+c$ since $x^{3}+c x$ is continuous; $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} x=1$ since x is continuous. For f to be continuous at $x=1$ we must have $\lim _{x \rightarrow 1} f(x)=f(1)=1$ so $1+c=1$ or $c=0$.
14. First we write down the equation for the tangent line at $a: y-f(a)=f^{\prime}(a)(x-a)$ and, since $f(x)=x^{2}+1$, we have $f^{\prime}(x)=2 x$, and or line is $y-\left(a^{2}+1\right)=(2 a)(x-a)$. This line passes through $(0,-3)$ whenever $(-3)-\left(a^{2}+1\right)=(2 a)(0-a)$. This yields $-a^{2}-4=-2 a^{2}$ or $a^{2}=4$ and $a= \pm 2$.

A second approach proceeds as follows. At the point $\left(x, x^{2}+1\right)$ on the curve, the slope of the tangent line is $2 x$ and the slope of the line from this point to $(0,-3)$ is $\frac{x^{2}+1-(-3)}{x-0}=\frac{x^{2}+4}{x}$. Equating these two slopes yields $2 x=\frac{x^{2}+4}{x}$ which again yields $x= \pm 2$.

