1. If

$$
(f \circ g)(x)=f(g(x))=\sin \left(x^{2}+1\right)
$$

what what is a possibility for $f$ and $g$ ?
2. If $h(t)=\frac{t}{t+1}$ and $m(s)=2 s+3$ what is $(h \circ m)(y)=h(m(y))$ ?
$* * * * * * * * * * * * * * * * * *$ Answer (s) ${ }^{* * * * * * * * * * * * * * * * * * * * ~}$

1. One choice is $f(x)=\sin (x)$ and $g(x)=x^{2}+1$. Another option is $f(x)=\sin (x+1)$ and $g(x)=x^{2}$.
2. $(h \circ m)(y)=\frac{2 y+3}{2 y+4}$.

Math. 125 Quiz \#2
September 11, 2001

1. What is $\lim _{x \rightarrow-1} \frac{2+x}{1-x}$ ?
2. What is $\lim _{x \rightarrow 0^{+}} \frac{1}{x}$ ?
3. Suppose $\lim _{x \rightarrow 1} f(x)=4$ and $\lim _{x \rightarrow 1} g(x)=-2$. If the following limit exists, what is it?

$$
\lim _{x \rightarrow 1} \frac{2 \cdot f(x)+3 \cdot g(x)}{(8+f(x) \cdot g(x))^{2}}
$$

4. What is $\lim _{x \rightarrow 3} x^{2}-2 x-3$ ?
******************* Answer(s)
5. $\frac{2+(-1)}{1-(-1)}=\frac{1}{2}$ (just plug in).
6. $+\infty$. This is a basic limit you should know.
7. Using various theorems we get $\frac{2 \cdot 4+3 \cdot(-2)}{(8+4 \cdot(-2))^{2}}=\frac{2}{0}$ so our theorems are not immediately applicable. However, the top of this fraction is close to 2 where as the bottom is close to 0 . Because of the square in the denominator, not only is the denominator close to 0 , but it is also positive so the answer is $+\infty$.
8. Just plug in again $3^{3}-2 \cdot 3-3=0$.

Math. 125 Quiz \#3

1. Show $f^{\prime}(x)=3 x^{2}+3$ using the definition of the derivative where

$$
f(x)=x^{3}+3 x+2
$$

2. Find all the vertical tangents of $f$.
```
******************* Answer(s) ********************
```

1. 

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\left((x+h)^{3}+3(x+h)+2\right)-\left(x^{3}+3 x+2\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}+3 x+3 h+2\right)-\left(x^{3}+3 x+2\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x^{2} h+3 x h^{2}+h^{3}+3 h}{h}=3 x^{2}+3 x h+h^{2}+3=x^{2}+3 .
\end{aligned}
$$

2. The only place where a vertical tangent can occur is when $\lim _{x \rightarrow a^{ \pm}} f^{\prime}(x)= \pm \infty$. But $f^{\prime}(x)$ is a polynomial and hence continuous everywhere so there are no vertical tangents.
3. Find the derivative of

$$
f(x)=\sin \left(\cos \left(x^{2}\right)\right)
$$

2. Find all values of $x$ for which the tangent line is horizontal.

Remark: $\frac{\pi}{2}>1$.
****************** Answer(s) ${ }^{* * * * * * * * * * * * * * * * * * ~}$

1. By the chain rule $f^{\prime}(x)=\cos \left(\cos \left(x^{2}\right)\right) \cdot\left(-\sin \left(x^{2}\right)\right) \cdot(2 x)$.
2. We need to solve $f^{\prime}(x)=0$, so first "simplify" our expression for $f^{\prime}(x)$ : $f^{\prime}(x)=$ $(-2 x) \cdot\left(\sin \left(x^{2}\right)\right) \cdot \cos \left(\cos \left(x^{2}\right)\right)$. The only way a product can vanish is for one of the factors to vanish so we need to solve $(-2 x)=0, \sin \left(x^{2}\right)=0$ and $\cos \left(\cos \left(x^{2}\right)\right)=0$. The frist equation has the unique solution $x=0$ and the hint plus the facts that $-1 \leq \cos (x) \leq 1$ and $\cos (x)=0$ only when $x=\frac{\pi}{2}+k \pi$ for integers $k$, shows that the third equation has no solutions. This leaves $\sin \left(x^{2}\right)=0$. Well, $\sin (x)=0$ if and only if $x=k \pi, k$ any integer, so we need to solve $x^{2}=k \pi$, and therefore $x= \pm \sqrt{k \pi}$ for $k$ a non-negative integer. The solution $x=0$ is included in the set $x= \pm \sqrt{k \pi}$ for $k$ a non-negative integer so these are all the solutions and hence all the horizontal tangents.

Math. 125 Quiz \#5 October 9, 2001

1. Car $A$ and car $B$ are approaching the intersection " $C$ " of two streets intersecting at a right angle. Car $A$ is going South at 45 mph , car $B$ is heading West at 30 mph . We denote the angle $\angle(C, B, A)$ by $\theta$, the distance from $C$ to $B$ by $x$, and the distance from $C$ to $A$ by $y$. Then, $\tan \theta=\frac{y}{x}$. At what rate is the angle $\theta$ changing when car $A$ and car $B$ are both 1 mile from the intersection?
q5.eps
$* * * * * * * * * * * * * * * * * *$ Answer(s) ${ }^{* * * * * * * * * * * * * * * * * * * ~}$

We are asked to compute $\frac{d \theta}{d t}$ when $x=1$ and $y=1$. We are given a relation $\tan \theta=\frac{y}{x}$ which holds all the time, so differentiating

$$
\begin{equation*}
\left(\sec ^{2} \theta\right) \frac{d \theta}{d t}=\frac{x \frac{d y}{d t}-y \frac{d x}{d t}}{x^{2}} \tag{*}
\end{equation*}
$$

We are further given $\frac{d y}{d t}=-45$ and $\frac{d x}{d t}=-30$ and we can plug onto $(*)$ provided we can compute $\sec ^{2} \theta$ when $x=y=1$. When $x=y=1$, $\tan \theta=1 \operatorname{so~}^{2} \sec ^{2} \theta=1+\tan ^{2} \theta=2$ and we get $2 \frac{d \theta}{d t}=(-45)-(-30)=-15$ so $\frac{d \theta}{d t}=-\frac{15}{2}$.

## Math. 125 Quiz \#6 <br> October 16, 2001

Find all the critical points for the function below. Which ones are local maxima? Why? Which ones are local minima? Why?
The existence theorem for global max/min does not apply to this function restricted to the interval $(-\infty,-2)$ since the interval must be a closed interval for the theorem to apply. Nevertheless, this function does have a minimum value on this interval. Where is it and why is it where you say? Why does this function have no maximum value on this interval?

$$
\frac{(x-5)^{8}}{(x+2)^{4}}
$$

$* * * * * * * * * * * * * * * * * * *$ Answer (s) ${ }^{* * * * * * * * * * * * * * * * * * * ~}$
First we need to compute the derivative of $r(x)=\frac{(x-5)^{8}}{(x+2)^{4}}$ :

$$
\begin{aligned}
r^{\prime}(x) & =\frac{8(x-5)^{7}(x+2)^{4}-(x-5)^{8} 4(x+2)^{3}}{(x+2)^{8}}=(x-5)^{7}(x+2)^{3} \frac{8(x+2)-(x-5) 4}{(x+2)^{8}} \\
& =\frac{(x-5)^{7}(8 x+16-4 x+20)}{(x+2)^{5}}=\frac{(x-5)^{7}(4 x+36)}{(x+2)^{5}}=\frac{4(x-5)^{7}(x+9)}{(x+2)^{5}} .
\end{aligned}
$$

To find the critical points, note that $r^{\prime}(x)$ is continuous everywhere it exists so we only need to solve $r^{\prime}(x)=0$ and find all the points where $r^{\prime}$ does not exist. Well, $r^{\prime}(x)=0$ only when $(x-5)^{7}(x+9)=0$ so $x=5$ and $x=-9: r^{\prime}(x)$ does not exist precisely when $(x+2)^{5}=0$ so $x=-2$.

| - | + | - | + |
| :--- | :--- | :--- | :--- |
| -9 | -2 | 5 |  |

Local minima occur at $x=-9$ and $x=5$ because the derivative changes from negative to positive at these points. The value $x=-2$ is not a local extremum since the function is not defined there. To understand $r(x)$ on the interval $(-\infty,-2)$ it helps to compute $\lim _{x \rightarrow \infty} r(x)=+\infty$ and $\lim _{x \rightarrow-2^{-}} r(x)=+\infty$. Hence $r(x)$ starts out very big far to the left
and decreases until $x=-9$. Thereafter, $r(x)$ steadily increases, getting larger and larger. Hence, if $x<-9, f(x)>f(-9)$ and if $x>9, f(x)>f(9)$ which is the definition of an absolute minimum. There can be no maximum on the interval $(-\infty,-2)$ since $r(x)$ gets larger and larger as $x$ gets closer and closer to -2 .

Math. 125 Quiz \#7 November 6, 2001
Find the rectangle of largest area that can be inscribed in the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

q7.eps
$* * * * * * * * * * * * * * * * * * * *$ Answer(s) ${ }^{* * * * * * * * * * * * * * * * * * ~}$
This is a max.-min. problem: specifically, we are being asked to maximize the area of a rectangle. The sides of the rectangle are $2 x$ and $2 y$, so the area is $A=4 x y$. This is typical of many max.-min. problems in that $A$ is a function of two variables, so we must eliminate one of them. The required equation comes from the fact that the point $(x, y)$ lies on the ellipse, so $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Solve for $y=b \sqrt{1-\frac{x^{2}}{a^{2}}}$. (Since our point is in the first quadrant, we want the solution for which $y \geq 0$.) Hence $A=4 b x \sqrt{1-\frac{x^{2}}{a^{2}}}$ is now a function of one variable. Additionally, we have set things up so that $0 \leq x \leq a$.

The next step is to locate the critical points of $A(x)$ so calculate

$$
A^{\prime}(x)=4 b\left(\sqrt{1-\frac{x^{2}}{a^{2}}}+x \frac{\frac{-2 x}{a^{2}}}{2 \sqrt{1-\frac{x^{2}}{a^{2}}}}\right)=4 b\left(\frac{1-\frac{x^{2}}{a^{2}}-\frac{x^{2}}{a^{2}}}{\sqrt{1-\frac{x^{2}}{a^{2}}}}\right)=4 b\left(\frac{1-2 \frac{x^{2}}{a^{2}}}{\sqrt{1-\frac{x^{2}}{a^{2}}}}\right)
$$

The critical points occur where $A^{\prime}$ is not defined $(x=a)$ or where $A^{\prime}=0$ (or $x=\frac{a}{\sqrt{2}}$ ). To locate the maximum, note $A(0)=A(a)=0$ and $A\left(\frac{a}{\sqrt{2}}\right)=2 a b$ so the largest area rectangle occurs when $(x, y)=\left(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right)$.

Math. 125 Quiz \#8
November 13, 2001
We wish to use Newton's method to find a solution to the equation

$$
\sec x=\tan x .
$$

Of course this is equivalent to solving the equation $\sec x-\tan x=0$. If we make a first approximation of $x=0$, what does Newton's method give for a second approximation?
$* * * * * * * * * * * * * * * * * *$ Answer (s) ${ }^{* * * * * * * * * * * * * * * * * * * *}$
Since $f(x)=\sec x-\tan x, f^{\prime}(x)=\sec x \tan x-\sec ^{2} x$, so we get

$$
x_{1}=0-\frac{f(0)}{f^{\prime}(0)} .
$$

Since $f(0)=\sec (0)-\tan (0)=1, f^{\prime}(0)=\sec (0) \tan (0)-\sec ^{2}(0)=1 \cdot 0-1^{2}=-1$ so $x_{1}=1$.

Math. 125 Quiz \#9
November 20, 2001

1. Consider the region in the plane below the graph $y=\sin x$; above the $x$-axis and between the vertical lines $x=0$ and $x=2$.
a. Divide the interval into 6 equal parts and write down the Riemann sum using the left-hand end points of each interval. Do not evaluate the sum or even try to simplify it.
b. Write a definite integral which evaluates the area precisely. Do not evaluate the integral.
2. What number is represented by the sum

$$
\sum_{q=-1}^{2} q\left(q^{2}-1\right) ?
$$

$* * * * * * * * * * * * * * * * * *$ Answer (s) $\mathrm{s}^{* * * * * * * * * * * * * * * * * * * ~}$
1a. The width of each interval is $\frac{2-0}{6}=\frac{1}{3}$; the left hand end points are $0, \frac{1}{3}, \frac{2}{3}, \frac{3}{3}=1$, $\frac{4}{3}$ and $\frac{5}{3}$. Hence the asked for Riemann sum is $\sin (0) \cdot \frac{1}{3}+\sin \left(\frac{1}{3}\right) \cdot \frac{1}{3}+\sin \left(\frac{2}{3}\right) \cdot \frac{1}{3}+\sin (1) \cdot \frac{1}{3}+\sin \left(\frac{4}{3}\right) \cdot \frac{1}{3}+\sin \left(\frac{5}{3}\right) \cdot \frac{1}{3}$.
1b. $\int_{0}^{2} \sin x d x$.
2. The sum is $(-1)\left((-1)^{2}-1\right)+(0)\left((0)^{2}-1\right)+(1)\left((1)^{2}-1\right)+(2)\left((2)^{2}-1\right)$. All the terms but the last vanish so the number is $2(4-1)=6$.

## Math. 125 Quiz \#10 November 27, 2001

Find the derivative of the function

$$
G(x)=\int_{0}^{\int_{1}^{x} \frac{1}{t} d t} \csc \theta d \theta
$$

with respect to $x$.

By the Chain Rule and the Fundamental Theorem of Calculus,

$$
G^{\prime}(x)=\csc \left(\int_{1}^{x} \frac{1}{t} d t\right) \cdot \frac{d \int_{1}^{x} \frac{1}{t} d t}{d x}
$$

We can do nothing with the integral inside the csc, but we can apply the Fundamental Theorem again to compute $\frac{d \int_{1}^{x} \frac{1}{t} d t}{d x}=\frac{1}{x}$, so

$$
G^{\prime}(x)=\csc \left(\int_{1}^{x} \frac{1}{t} d t\right) \cdot \frac{1}{x}
$$

Math. 125 Quiz \#11 November 11, 2001

1. Write a definite integral that evaluates to the area of the shaded region below. Do not evaluate the integral.
2. Rotate the shaded region about the line $y=2$ and write a definite integral that evaluates to the volume of the resulting solid of revolution. Do not evaluate the integral.
3. Rotate the shaded region about the line $x=3$ and write a definite integral that evaluates to the volume of the resulting solid of revolution. Do not evaluate the integral.

## graph11.eps

$* * * * * * * * * * * * * * * * * *$ Answer (s) ${ }^{*} * * * * * * * * * * * * * * * * *$

1. It is easy to describe the two curves as graphs of $y$ as a function of $x$. Hence

Area $=\int_{-1}^{1}\left(x^{2}-x^{4}\right) d x$.
Having done the area, the remaining two problems are practically done.
2. Since we are rotating around $y=2$ which is perpendicular to the $x$-axis, we get washers so
Volume $_{y=2}=\pi \int_{-1}^{1}\left(\left(2-x^{4}\right)^{2}-\left(2-x^{2}\right)^{2}\right) d x$.
3. Since we are rotating around the line $x=3$ which is parallel to the $x$-axis, we get shells so
Volume $_{x=3}=2 \pi \int_{-1}^{1}(3-x)\left(x^{2}-x^{4}\right) d x$.

