11. 

$$
f(x)=\frac{x^{2}-4}{x-5}
$$

Since $\lim _{x \rightarrow \pm \infty} f(x)= \pm \infty$ (Rational function - you should know how to do this by inspection.) there are no horizontal asymptotes. Since the denominator vanishes only at $x=5, x=5$ is the only possible vertical asymptote. Since $\lim _{x \rightarrow 5^{+}} f(x)=+\infty, x=5$ is a vertical asymptote. The calculation $\lim _{x \rightarrow 5^{-}} f(x)=-\infty$ also helps you draw the curve had that been required, but you only need one of the one-sided limits to be $\pm \infty$ to have a vertical asymptote.

Since the degree of the numerator minus the degree of the denominator is $2-1=1$, there is an oblique asymptote. The calculation $f(x)=\frac{x^{2}-4}{x-5}=x+5+\frac{21}{x-5}$ shows that the oblique asymptote is the line $y=x+5$.
12. The slope of the graph is the derivative. In this case, evaluated at $x=1$, so we need to compute

$$
\text { slope }=\lim _{x \rightarrow 1} \frac{(x+1)^{2}-4}{x-1}
$$

After this proceed as follows:

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{(x+1)^{2}-4}{x-1} & =\lim _{x \rightarrow 1} \frac{x^{2}+2 x+1-4}{x-1}=\lim _{x \rightarrow 1} \frac{x^{2}+2 x-3}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)(x+3)}{x-1}=\lim _{x \rightarrow 1} x+3=4
\end{aligned}
$$

13. Since we have no air resistance and we drop the rock with an initial velocity of 0 at a height 0 above the ground, the position of the rock at time $t$ seconds is $s(t)=-\frac{1}{2} g t^{2}$, as it says in the Hint:. When the rock hits the water, $s(t)=-100$ so we get the equation $-100=-\frac{1}{2} g t^{2}$, or more conveniently

$$
200=g t^{2}
$$

where $t$ is the time at which the rock hits the water. If we can find $t$ we can easily solve for $g$ and what we know is that 2.6 seconds after we drop the rock, we hear it hit. Since sound travels at $1000 \mathrm{ft} / \mathrm{sec}$, it takes $\frac{100}{1000}=0.1$ seconds for sound from the bottom of the well to reach the top. Hence the rock hit the water $2.6-0.1=2.5$ seconds after it was dropped. Hence $g=\frac{200}{(2.5)^{2}}$. To simplify this without a calculator is not hard but only a point was deducted for not doing it so plan your time accordingly:

$$
g=\frac{200}{(2.5)^{2}}=\frac{2 \cdot 10^{2}}{(25)^{2} \cdot 10^{-2}}=\frac{2 \cdot 10^{4}}{5^{4}}=2 \cdot 2^{4}=32
$$

14. We have $\cot \left(\frac{\pi}{4}\right)-\frac{\pi}{4}=1-\frac{\pi}{4}=\frac{4-\pi}{4}>0 . \cot \left(\frac{\pi}{2}\right)-\frac{\pi}{2}=0-\frac{\pi}{2}=-\frac{\pi}{2}<0$. Since $\cot (t)-t$ is a continuous function on $\left[\frac{\pi}{4}, \frac{\pi}{2}\right], \cot (t)-t=0$ has a solution in the interval.
15. The line $y=3 x-4$ is tangent to the unknown curve at the point $x=2$. On the other hand, the equation for the tangent line to the curve $y=f(x)$ at the point $x=a$ is given by $y=f^{\prime}(a)(x-a)+f(a)$. For this problem, $f(x)$ is unknown, but $a=2$. Further, $y=3 x-4=3(x-2)+2$, so $f(2)=2$ and $f^{\prime}(2)=3$. Of course we have no idea what the values of $f(x)$ or $f^{\prime}(x)$ are at any point other than 2 .
