9. The point $(3,2)$ lies on the curve given by the equation $y^{3}+y+x^{3}+x=40$ and we wish to find $\frac{d y}{d x}$ at this point. Differentiate both sides of our equation with respect to x :

$$
3 y^{2} \frac{d y}{d x}+\frac{d y}{d x}+3 x^{2}+1=0
$$

We can now solve for $\frac{d y}{d x}$ and then plug in, or first plug in and then solve.

$$
\begin{gather*}
\frac{d y}{d x}\left(3 y^{2}+1\right)=-\left(3 x^{2}+1\right) \tag{*}\\
\frac{d y}{d x}=-\frac{3 x^{2}+1}{3 y^{2}+1}
\end{gather*}
$$

and plugging in yields

$$
\frac{d y}{d x}=-\frac{3 \cdot 3^{2}+1}{3 \cdot 2^{2}+1}=-\frac{28}{13}
$$

OR

$$
\begin{gathered}
3 \cdot 2^{2} \frac{d y}{d x}+\frac{d y}{d x}+3 \cdot 3^{2}+1=0 \\
13 \frac{d y}{d x}+28=0 \\
\frac{d y}{d x}=-\frac{28}{13}
\end{gathered}
$$

You were not asked, but notice this calculation shows that the function is decreasing at $(3,2)$. To check the concavity at this point, it is easiest to calculate from (*) by differentiating again with respect to x.

$$
\frac{d^{2} y}{d x^{2}}\left(3 y^{2}+1\right)+\frac{d y}{d x}(6 y)=-6 x
$$

and plugging in $x=3, y=2$ and $\frac{d y}{d x}=-\frac{28}{13}$ yields

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}\left(3 \cdot 2^{2}+1\right)-\frac{28}{13}(6 \cdot 2)=-6 \cdot 3 \\
\frac{d^{2} y}{d x^{2}}(13)-\frac{28}{13}(12)=-18 \\
\frac{d^{2} y}{d x^{2}}(13)=\frac{28}{13}(12)-18 \\
\frac{d^{2} y}{d x^{2}}(13)=\frac{28}{13}(12)-18=\frac{336-234}{13}=\frac{102}{13}
\end{gathered}
$$

so

$$
\frac{d^{2} y}{d x^{2}}=\frac{102}{13^{2}}=\frac{102}{169}
$$

and the curve is concave up at this point.
10. This is a hard related rates problem in which we are asked the rate $\frac{d \gamma}{d t}$ at 2 o'clock. The first step is to observe that the lengths of the hands of the clock (a and b in our formulae) are constant: $a=6 b=4$. The other rate is $\frac{d \gamma}{d t}$ which we can compute as follows.

The hour hand revolves at a rate of $\frac{2 \pi}{12}$ radians $/ h r=\frac{2 \pi}{12} \cdot \frac{1}{60}$ radians $/ \mathrm{min}$.
The minute hand revolves at a rate of $\frac{2 \pi}{60}$ radians/min.
Hence
$\frac{d \gamma}{d t}=\frac{2 \pi}{12} \cdot \frac{1}{60}-\frac{2 \pi}{60}$ radians $/ \min =\frac{2 \pi}{60} \cdot \frac{1}{12}-\frac{2 \pi}{60}=\frac{2 \pi}{60}\left(\frac{1}{12}-1\right)=-\frac{2 \pi}{60} \cdot \frac{11}{12}$ radians $/ \mathrm{min}$.
At 2 o'clock, the hour hand is at 2, and the minute hand is straight up so $\gamma=\frac{\pi}{3}-$ $0=\frac{\pi}{3}$ radians and therefore $c=\sqrt{6^{2}+4^{2}-2 \cdot 6 \cdot 4 \cos \left(\frac{\pi}{3}\right)}=\sqrt{36+16-48 \cdot \frac{1}{2}}=$ $\sqrt{52-24}=\sqrt{28}$.

The Law of Cosines holds for any triangle so we may differentiate it with respect to t to get

$$
2 c \frac{d c}{d t}=-2 a b(-\sin \gamma) \frac{d \gamma}{d t}
$$

so

$$
\frac{d c}{d t}=\frac{a b}{c} \sin \gamma \frac{d \gamma}{d t}
$$

and at 2 o'clock

$$
\begin{gathered}
\frac{d c}{d t}=\frac{6 \cdot 4}{\sqrt{28}} \sin \left(\frac{\pi}{3}\right)\left(-\frac{2 \pi}{60} \cdot \frac{11}{12}\right) \\
\frac{d c}{d t}=-\frac{24}{\sqrt{28}} \cdot \frac{\sqrt{3}}{2} \cdot \frac{2 \pi}{60} \cdot \frac{11}{12}
\end{gathered}
$$

Simplify to taste. As a sanity check, note that we got a negative number for the answer which means that the distance between the two hands is getting smaller. We expect this since in a few minutes, the minute hand will pass the hour hand.
11. For $f(x)=1-9 x-6 x^{2}-x^{3}, f^{\prime}(x)=-9-12 x-3 x^{2}$ and $f^{\prime \prime}(x)=-12-6 x$. The questions asked can be answered after we have analyzed where f^{\prime} and $f^{\prime \prime}$ are positive and where they are negative.

Start with the easiest, $f^{\prime \prime}(x)=-12-6 x$: it vanishes only at $x=-2$. Since $f^{\prime \prime}(-3)=$ $6>0$, for $x<-2 f^{\prime \prime}$ is positive. Since $f^{\prime \prime}(-1)=-6<0$, for $x>-2 f^{\prime \prime}$ is negative. Hence f is concave up on $(-\infty,-2)$ and concave down on $(-2, \infty)$.

Next find where first derivative $f^{\prime}(x)=-9-12 x-3 x^{2}$ vanishes: $0=-9-12 x-$ $3 x^{2}$ or $3 x^{2}+12 x+9=0$ or $x^{2}+4 x+3=0$ or $(x+1)(x+3)=0$, so $x=-1$ and $x=-3$ are the solutions. Evaluate $f^{\prime}(-4)=-9, f^{\prime}(-2)=3$ and $f^{\prime}(0)=-9$. Hence f is decreasing on $(-\infty,-3)$, increasing on $(-3,-1)$ and decreasing on $(-1, \infty)$.

12. The relevant questions here are: where is $\frac{d y}{d x}$ positive and where is it negative? Since $\frac{d y}{d x}=y^{2}-y$, regarding the left-hand side, we see that the relevant regions are divided when $y^{2}-y=0$ or $y=0$ and $y=1$. In other words, the phase lines are $y=0$ and $y=1$. For $y>1$ the solution curves are increasing; for y between 0 and 1 they are decreasing; and for $y<0$ they are increasing again.

From the picture it is clear that $y=0$ is a stable equilibrium and $y=1$ is an unstable one.
13. Let x denote the distance of the fence facing the road, which corresponds to one side of the rectangle, and y the length of the other side. The cost of fencing the garden with these dimensions is: $C=6 x+2 y+2 x+2 y=8 x+4 y$. There are $\$ 320$ available for the construction, so: $320=8 x+4 y$. The area is given by $A=x y$. Solving for y in the first equation, $y=80-2 x$. Finally: $A(x)=x(80-2 x)=80 x-2 x^{2}$. Taking derivative and setting it equal to zero, $A^{\prime}(x)=80-4 x=0$, so $x=20, y=40$.

