Exam I

September 25, 2001
11. To find the tangent line we need to know the slope, which we find via implicit differentiation:

$$
\begin{equation*}
2 x+y^{\prime}=3 \cos (x+y)\left(1+y^{\prime}\right) \tag{*}
\end{equation*}
$$

so at the point $(1,-1)$ we get the equation $2 \cdot 1+\left.y^{\prime}\right|_{(1,-1)}=3 \cos (0)\left(1+\left.y^{\prime}\right|_{(1,-1)}\right)=3(1+$ $\left.\left.y^{\prime}\right|_{(1,-1)}\right)$, so $\left.y^{\prime}\right|_{(1,-1)}=-\frac{1}{2}$. Hence an equation for the tangent line is $y-(-1)=-\frac{1}{2}(x-1)$.

The curve lies above the tangent line in a neighborhood of the point $(1,-1)$ provided $\left.y^{\prime \prime}\right|_{(1,-1)}>0$. Likewise it lies below the tangent line if $\left.y^{\prime \prime}\right|_{(1,-1)}<0$. We compute implicitly by differentiating (*):

$$
2+y^{\prime \prime}=-3 \sin (x+y)\left(1+y^{\prime}\right)^{2}+3 \cos (x+y)(y \prime \prime) .
$$

At the point $(1,-1)$ we get $2+\left.y^{\prime \prime}\right|_{(1,-1)}=-3 \sin (0)\left(1+y^{\prime}\right)^{2}+3 \cos (0)\left(\left.y^{\prime \prime}\right|_{(1,-1)}\right)=$ $3\left(\left.y^{\prime \prime}\right|_{(1,-1)}\right)$, so $\left.y^{\prime \prime}\right|_{(1,-1)}=1>0$ and the curve lies above the tangent line in a neighborhood of the point.
12. You are being asked to find $\frac{d V}{d t}$ at a certain moment in time. You are given that $V=\frac{\pi}{3} r^{2} h$ so $\frac{d V}{d t}=\frac{\pi}{3} 2 r \frac{d r}{d t} h+\frac{\pi}{3} r^{2} \frac{d h}{d t}$. The time being asked for is a time when $h=r=2$, $\frac{d r}{d t}=4$ and $\frac{d h}{d t}=2$, so $\frac{d V}{d t}=\frac{\pi}{3} 2 \cdot 2 \cdot 4 \cdot 2+\frac{\pi}{3} 2^{2} \cdot 2=(32+8) \frac{\pi}{3}=\frac{40}{3} \pi$.
13. By the Mean Value Theorem, $\sin (a)-\sin (b)=\cos (c)(b-a)$ for some c between a and b. If we take $a=2.674$ and $b=2.670$ we see $b-a=0.004$ and we know that $-1 \leq \cos (c) \leq 1$ and it follows that $-0.004 \leq \sin (2.674)-\sin (2.670) \leq 0.004$ which is equivalent to our absolute value inequality. Since $\frac{\pi}{2}<2.670<2.674<\pi$, we actually know $\frac{\pi}{2}<c<\pi$ and for any c in this range, $\cos (c)<0$, so we see $\sin (2.674)-\sin (2.670)<0$.
14. First we locate the critical points: y^{\prime} is defined and continuous everywhere since $x^{2}+1>0$ so we are never dividing by 0 or taking the square root of a negative number. Therefore $x=0$ is the only critical point. Similar reasoning shows $y^{\prime \prime}$ is defined and continuous everywhere and is never 0 . Therefore,
a. f is increasing on the interval $(0, \infty)$ and decreasing on the interval $(-\infty, 0)$.
b. f is concave up everywhere and concave down nowhere.
c. Since $\sqrt{x^{2}+1}$ is defined and continuous everywhere, the graph can have no vertical asymptotes.
To check the slant asymptote assertions we need to show $\lim _{x \rightarrow \infty} \sqrt{x^{2}+1}-x=0$ and $\lim _{x \rightarrow \infty} \sqrt{x^{2}+1}-(-x)=0$.

Compute $\lim _{x \rightarrow \infty} \sqrt{x^{2}+1}-x=\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+1}-x\right) \cdot \frac{\sqrt{x^{2}+1}+x}{\sqrt{x^{2}+1}+x}=$
$\lim _{x \rightarrow \infty} \frac{\left.\left(\sqrt{x^{2}+1}\right)^{2}-x^{2}\right)}{\sqrt{x^{2}+1}+x}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{x^{2}+1}+x}=\lim _{x \rightarrow \infty} \frac{1}{x} \cdot \frac{1}{\sqrt{1+\frac{1}{x^{2}}}+1}=$
$\lim _{x \rightarrow \infty} 0 \cdot \frac{1}{\sqrt{1+0}+1}=0$.
Compute $\lim _{x \rightarrow-\infty} \sqrt{x^{2}+1}-(-x)=\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}+1}+x\right) \cdot \frac{\sqrt{x^{2}+1}-x}{\sqrt{x^{2}+1}-x}=$
$\lim _{x \rightarrow-\infty} \frac{\left.\left(\sqrt{x^{2}+1}\right)^{2}-x^{2}\right)}{\sqrt{x^{2}+1}-x}=\lim _{x \rightarrow-\infty} \frac{1}{\sqrt{x^{2}+1}-x}=\lim _{x \rightarrow-\infty} \frac{1}{x} \cdot \frac{1}{-\sqrt{1+\frac{1}{x^{2}}}-1}=$ $\lim _{x \rightarrow-\infty} 0 \cdot \frac{1}{-\sqrt{1+0}-1}=0$.

