Exam I

September 25, 2001
11. The formula from Newton's method is $x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}$ which in our case amounts to

$$
x_{1}=x_{0}-\frac{x_{0}^{3}+x_{0}^{2}+1}{3 x_{0}^{2}+2 x_{0}}
$$

Compute $f(-2)=(-2)^{3}+(-2)^{2}+1=-8+4+1=-3<0$ and $\left.\left.f(-1)=(-1)^{3}+\right)-1\right)^{2}+1=$ $-1+1+1=1>0$ so by the Intermediate Value Theorem, there is at least one zero in this interval. (Parenthetical Remark: It is not hard to check that $3 x^{2}+2 x>0$ on the interval $[-2,-1]$ so f is increasing on this interval and so there is precisely one zero there.)
12. If the two sides of the rectangle are x and y, then the area is $A=x y$ and the cost of fence is $C=10 x+20(x+2 y)=30 x+40 y$ if we let x denote the length of the side with the fence. Since $A=80, y=\frac{80}{x}$ and $C=30 x+40 \cdot \frac{80}{x}$. We need to minimize C so compute $\frac{d C}{d x}=30-40 \cdot \frac{80}{x^{2}}$. The critical points are $x=0$ and $30-40 \cdot \frac{80}{x^{2}}=0$, or $40 \cdot \frac{80}{x^{2}}=30$, or $x^{2}=\frac{40 \cdot 80}{30}=\frac{320}{3}$. Hence $x= \pm \sqrt{\frac{320}{3}}$. In our problem, $x>0$ so $x=\sqrt{\frac{320}{3}}$ is a critical point. By the first derivative test, $x=\sqrt{\frac{320}{3}}$ is a local maximum and is the only critical point on the interval $(0, \infty)$ and so there it is a global minimum.

Hence you should make the side with the fence $\sqrt{\frac{320}{3}}$ feet long and the other side of the rectangle should be $\frac{80}{\sqrt{\frac{320}{3}}}$ feet long. The total cost in dollars is $30 \cdot \sqrt{\frac{320}{3}}+40 \cdot \frac{80}{\frac{80}{\sqrt{\frac{320}{3}}}}=$ $30 \cdot \sqrt{\frac{320}{3}}+40 \cdot \sqrt{\frac{320}{3}}=70 \cdot \sqrt{\frac{320}{3}}$.
13. You are being asked to minimize the distance from the point $\left(x, x^{2}\right)$ on the parabola to the point $(0,1)$. A formula for this distance is $d=\sqrt{(x-0)^{2}+\left(x^{2}-1\right)^{2}}$. You can simplify your work by minimizing d^{2} but we will stick with d. Well, $d=$ $\sqrt{x^{2}+x^{4}-2 x^{2}+1}=\sqrt{x^{4}-x^{2}+1}$. The only critical points in this case occur where the derivative, $\frac{4 x^{3}-2 x}{2 \sqrt{x^{2}+x^{4}-2 x^{2}+1}}$, vanishes. But this happens if and only if $4 x^{3}-2 x=0$ or when $x=0$ and $x= \pm \sqrt{\frac{1}{2}}$. The sign of the derivative alternates as we pass through each critical point, so $\pm \sqrt{\frac{1}{2}}$ are local minima and 0 is a local maximum. Since $\lim _{x \rightarrow \pm \infty} d=\infty$, it follows that $x= \pm \sqrt{\frac{1}{2}}$ are global minima. The corresponding points on the parabola are $\left(\pm \sqrt{\frac{1}{2}}, \frac{1}{2}\right)$.
14. Since $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$ in general we proceed as follows. In our case, $a=0, b=1$ and $f(x)=3 x^{2}+2$. Moreover, x_{i}^{*} is to be the right-hand end point of the i th interval. Then $\Delta x=\frac{b-a}{n}=\frac{1}{n}$ and the right-hand end point of the i th interval is given by $x_{i}^{*}=a+i \Delta x=\frac{i}{n}$.

Hence we get $\int_{0}^{1}\left(3 x^{2}+2\right) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(3\left(\frac{i}{n}\right)^{2}+2\right) \frac{1}{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{3 i^{2}}{n^{3}}+\frac{2}{n}\right)=$ $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{3 i^{2}+2 n^{2}}{n^{3}}\right)=\lim _{n \rightarrow \infty} \frac{3 \sum_{i=1}^{n} i^{2}+2 n^{2} \sum_{i=1}^{n} 1}{n^{3}}=\lim _{n \rightarrow \infty} \frac{3 \frac{n(n+1)(2 n+1)}{6}+2 n^{3}}{n^{3}}=$ $\lim _{n \rightarrow \infty} \frac{n(n+1)(2 n+1)}{2 n^{3}}+\lim _{n \rightarrow \infty} 2=1+2=3$.

