Multiple Choice

1.(6 pts.) Find the limit $\lim_{x\to 2} \frac{x^3+4}{x^2-1}$.

(a) 4 (b)

(c) 6 (d) $+\infty$ (e) Does not exist.

2.(6 pts.) A body moves along a straight line with a constant acceleration of 5 m/sec². Initially it is moving at a velocity of 11 m/sec at a distance of 20 m from the zero position on the line. Which formula below is a formula for the body's position at time t?

(a) $\frac{11}{2}t^2 + 20$ (b) $\frac{5}{2}t^2 + 11t + 20$ (c) $10t^2 + 11t + 5$ (d) $\frac{5}{2}t^2 + 11t$

(e) $\frac{11}{2}t^2 + 5t + 20$

3.(6 pts.) A 13 ft ladder is leaning against the side of a building when its base begins to slide away from the building. By the time the base is 5 ft from the building, the base is moving at a rate of 4 ft/sec. How fast is the top of the ladder sliding down the wall at this moment?

(a) $\frac{3}{5}$ ft/sec (b) 4 ft/sec (c) $\frac{5}{12}$ ft/sec (d) $\frac{5}{3}$ ft/sec (e) $\frac{1}{4}$ ft/sec

4.(6 pts.) Let $f(x) = \int_{0}^{1+x^2} \frac{1}{t^2-1} dt$. Evaluate f'(3).

 $\frac{9}{10}$ (b) $\frac{10}{9}$ (c) $\frac{2}{33}$ (d) $\frac{1}{99}$ (e) $\frac{1}{9}$

5.(6 pts.) Find an equation for the tangent line to the curve $y = x^4 - 15x^2 + 30$ at the point (2, -14).

(a) $y = \frac{1}{28}x - 14$

(b) y = 32x - 78

(c) y = x - 16

(d) $y = (4x^3 - 30x)(x - 2) - 14$

(e) y = -28x + 42

6.(6 pts.) $\lim_{x \to \infty} \frac{3x^4 - 5x^3 + 1x^2 - 19x + 11}{5x^4 - 6x^3 + 7x^2 - 78x + 199} = ?$

(a) $\frac{3}{199}$ (b) $\frac{3}{5}$ (c) $\frac{11}{5}$

7.(6 pts.) Which equation below is the solution to the initial value problem

$$\frac{dy}{dx} = \frac{1}{3 + \sin^2 x}$$
 ; $y(1) = 2$

- (a) $2 + \int_{1}^{x} \frac{1}{3 + \sin^{2} w \cos w} dw$
- (b) $3 + \int_{1}^{x} \frac{1}{2 + \sin^2 w} dw$
- (c) $1 + \int_{0}^{x} \frac{1}{3 + \sin^{2} w} dw$
- (d) $1 + \int_{2}^{x} \frac{1}{3 + 2\sin w \cos w} dw$
- (e) $2 + \int_{1}^{x} \frac{1}{3 + \sin^{2} w} dw$

8.(6 pts.) Evaluate $\int_{1}^{9} \frac{1}{\sqrt{x}(1+2\sqrt{x})^2} dx$.

- (a) $\frac{4}{21}$
- (b) $\frac{1}{4}$ (c) $\frac{1}{7}$

(e) The integral does not exist.

9.(6 pts.) The equation $x^5 + x - 1 = 0$ has one solution between 0 and 1. Find the result of one iteration of Newton's Method applied to this equation with 1 as the starting point.

- (a) $\frac{3}{4}$ (b) $\frac{5}{7}$ (c) 1 (d) $\frac{5}{6}$ (e) $\frac{1}{2}$

10.(6 pts.) Consider $\int_{1}^{3} x^{3} dx$. Divide the interval of integration into 5 equal pieces. Which summation below is the Riemann sum for this partition where the point in each interval is a point at which f(x) obtains its maximum in that interval?

- (a) $\frac{2}{5} \sum_{i=0}^{4} \left(1 + \frac{2i}{5}\right)^3$ (b) $\frac{2}{5} \sum_{i=0}^{4} \left(\frac{2i}{5}\right)^3$ (c) $\frac{2}{5} \sum_{i=0}^{5} \left(\frac{2i}{5}\right)^3$
- (d) $\frac{1}{5} \sum_{i=1}^{5} \left(1 + \frac{2i}{5}\right)^3$ (e) $\frac{2}{5} \sum_{i=1}^{5} \left(1 + \frac{2i}{5}\right)^3$

11.(6 pts.)

Which sum below is the result of applying the Trapezoid rule to the integral $\int_{-2}^{2} \sqrt{x^4 + 1} \ dx$ where we divide the interval into 8 pieces?

(a)
$$\frac{1}{4} \left(1 \cdot \sqrt{17} + 2 \cdot \frac{\sqrt{97}}{4} - 2 \cdot \sqrt{2} + 2 \cdot \frac{17}{4} + 2 \cdot 1 - 2 \cdot \frac{17}{4} + 2 \cdot \sqrt{2} - 2 \cdot \frac{\sqrt{97}}{4} + 1 \cdot \sqrt{17} \right)$$

(b)
$$\frac{1}{3} \left(1 \cdot \sqrt{17} + 2 \cdot \frac{\sqrt{97}}{4} + 4 \cdot \sqrt{2} + 2 \cdot \frac{17}{4} + 4 \cdot 1 + 2 \cdot \frac{17}{4} + 2 \cdot \sqrt{2} + 4 \cdot \frac{\sqrt{97}}{4} + 1 \cdot \sqrt{17} \right)$$

(c)
$$\frac{1}{4} \left(1 \cdot \sqrt{17} + 2 \cdot \frac{\sqrt{97}}{4} + 2 \cdot \sqrt{2} + 2 \cdot \frac{17}{4} + 2 \cdot 1 + 2 \cdot \frac{17}{4} + 2 \cdot \sqrt{2} + 2 \cdot \frac{\sqrt{97}}{4} + 1 \cdot \sqrt{17} \right)$$

(d)
$$\frac{1}{2} \left(1 \cdot \sqrt{17} + 2 \cdot \frac{\sqrt{97}}{4} + 2 \cdot \sqrt{2} + 2 \cdot \frac{17}{4} + 2 \cdot 1 + 2 \cdot \frac{17}{4} + 2 \cdot \sqrt{2} + 2 \cdot \frac{\sqrt{97}}{4} + 1 \cdot \sqrt{17} \right)$$

(e)
$$\frac{1}{4} \left(1 \cdot \sqrt{17} + 2 \cdot \frac{\sqrt{97}}{4} - 4 \cdot \sqrt{2} + 2 \cdot \frac{17}{4} + 2 \cdot 1 - 4 \cdot \frac{17}{4} + 2 \cdot \sqrt{2} - 4 \cdot \frac{\sqrt{97}}{4} + 1 \cdot \sqrt{17} \right)$$

12.(6 pts.) The slope of the tangent line to the curve $y^2 = x^3 - 3x^2 + 2x$ at the point $(3, -\sqrt{6})$ is

(a)
$$\frac{3}{2\sqrt{6}}$$
 (b) $\frac{\sqrt{6}}{2}$ (c) $\frac{-\sqrt{6}}{2}$ (d) $-\frac{11}{2\sqrt{6}}$ (e) $\frac{11}{2\sqrt{6}}$

13.(6 pts.) What is $\frac{d^2y}{dx^2}$ for the parameterized curve $x(t) = 1 + \sin t$, $y(t) = t + \cos t$ when t = 0?

(a)
$$-1$$

$$(d)$$
 $tan(1)$

(e) The curve is not differentiable at t = 0.

14.(6 pts.) Consider a solid in space which is sliced by planes perpendicular to the x axis. The base of the solid is in the yz plane. At distance x > 0 from the yz plane, the slice is a **square** with the length of one side being $\sqrt{1-x^3}$. Which integral below computes the volume?

(a)
$$\pi \int_0^1 (1-x^3) dx$$
 (b) $2\pi \int_0^1 \sqrt{1-x^3} dx$ (c) $2\pi \int_0^1 x\sqrt{1-x^3} dx$

(d)
$$\int_0^1 x\sqrt{1-x^3} \, dx$$
 (e) $\int_0^1 (1-x^3) \, dx$

15.(6 pts.) Which statement below holds for the autonomous differential equation

$$\frac{dy}{dx} = \frac{y}{1+y^2} ?$$

(a) If
$$y(0) > 0$$
 then $y(2) > y(0)$. (b) If $y(0) > 0$ then $y(2) < y(0)$.

(c) If
$$y(0) < 0$$
 then $y(2) > y(0)$. (d) $y = \frac{2}{5}$ is a solution.

(e) The equation has no solution for which y is a constant.

16.(6 pts.) Consider the region in the first quadrant bounded by the lines y = 2x + 1 and x = 3. Rotate this region around the y axis. Which integral below computes the volume of the resulting solid of revolution?

(a)
$$\pi \int_0^3 y(1-y) dy$$
 (b) $2\pi \int_0^3 x(2x+1) dx$

(c)
$$2\pi \int_0^3 3(2x+1) dx$$
 (d) $\pi \int_0^3 (2x+1)^2 - x^2 dx$

(e)
$$\pi \int_0^7 (3^2 - (2x+1)^2) dx$$

17.(6 pts.) Where does the graph of the linearization of the function $f(x) = 3x^3 - 12$ at x = 2 cross the y axis?

(a) At
$$y = -12$$
. (b) At $y = -60$. (c) At $x = 2$. (d) No where. (e) At $y = 24$.

18.(6 pts.) On which interval below is the function $2x^3 - 15x^2 + 24x$ decreasing?

(a)
$$[0,4]$$
 (b) $[2,8]$ (c) $[1,4]$ (d) $[3,5]$ (e) $[0,2]$

19.(6 pts.) How many inflection points does the curve $y = 4x^5 - 5x^4 - 9$ have?

- (a) None
- (b) 1
- (c) 2
- (d) 3
- (e) 4

20.(6 pts.)

If the following is a graph of the function f(x) which graph among the answers is the graph of $\int_0^x f(t) dt$?

(b)

21.(6 pts.) Which answer below identifies all of the asymptotes of the curve

$$y = \frac{x^2 + 2x + 1}{x - 1} ?$$

- (a) x = 1 is a vertical one; y = -1 is a horizontal asymptote.
- (b) x = 1 is a vertical asymptote.
- (c) x = 1 is a vertical asymptote; y = 1 is a horizontal one.
- (d) x = 1 is a vertical asymptote; y = x + 3 is an oblique one.
- (e) y = 3 is a horizontal asymptote.

22.(6 pts.)

The curves $y = x^4 - 3$ and $y = -x^4 + 5$ enclose an area. Set up a definite integral which calculates the area of this region.

(a) $\int_{-1}^{1} (8 - 2x^4) dx$

(b) $\int_{-1}^{1} 2 dx$

(c) $\int_{-\sqrt{2}}^{\sqrt{2}} (8 - 2x^4) \, dx$

(d) $\int_0^{\sqrt[4]{3}} (8-2x^4) dx$

(e) $\int_{-\sqrt{2}}^{\sqrt{2}} 2 \, dx$

23.(6 pts.) Evaluate $\int (1 - \sin^2 x) \cos x \, dx$.

- (a) $\frac{1}{3}\sin(3x) \frac{2}{3}\cos^2 x + C$
- (b) $\cos x \frac{\cos^3 x}{3} + C$
- (c) $\frac{1}{3}\cos(3x) \frac{2}{3}\sin^2 x + C$
- (d) $\sin x \frac{\sin^3 x}{3} + C$
- (e) $\frac{1}{3}\cos(3x) \frac{2}{3}\cos^2 x + C$

24.(6 pts.) Which integral below gives the length of the curve $x(t) = 2\cos t$, $y(t) = 5\sin t$ from t = 0 to $t = \frac{\pi}{2}$?

(a)
$$\int_0^{\frac{\pi}{2}} \sqrt{4\sin^2 t + 25\cos^2 t} \, dt$$

(b)
$$\int_0^{\frac{\pi}{2}} \sqrt{4\cos^2 t + 25\sin^2 t} \, dt$$

(c)
$$\int_0^{\frac{\pi}{2}} \sqrt{4\sin^2 t + 4\cos^2 t} \, dt$$

(d)
$$\int_0^{\frac{\pi}{2}} \sqrt{1 + 4\sin^2 t + 25\cos^2 t} \, dt$$

(e)
$$\int_0^{\frac{\pi}{2}} \sqrt{1 + 4\cos^2 t + 25\sin^2 t} \, dt$$

Find the work done in pumping a liquid over the rim of a tank. The tank is 50 ft long and has a semi-circular end of radius 10ft. Suppose that the tank is filled to a depth of 7 ft and that the liquid has a density of 100 ft·lbs/ft³.

(a)
$$-10^4 \int_{-10}^{-3} y \sqrt{100 - y^2} \, dy \text{ ft} \cdot \text{lbs}$$
 (b) $-10^4 \int_{-10}^{-7} y \sqrt{100 - y^2} \, dy \text{ ft} \cdot \text{lbs}$

(b)
$$-10^4 \int_{-10}^{-7} y \sqrt{100 - y^2} \, dy \text{ ft} \cdot \text{lbs}$$

(c)
$$-10^4 \int_{-10}^{-3} \sqrt{100 - y^2} \, dy \text{ ft} \cdot \text{lbs}$$
 (d) $-10^4 \int_{-10}^{-7} \sqrt{100 - y^2} \, dy \text{ ft} \cdot \text{lbs}$

(d)
$$-10^4 \int_{-10}^{-7} \sqrt{100 - y^2} \, dy \text{ ft} \cdot \text{lbs}$$

(e) 0 ft·lbs

Name:	ANSWERS						
Instructor:	ANSWERS						
Final Exam December 15, 2000							
 The Honor Code is in effect for this exami No calculators. The exam lasts for two hours. 	nation. All work is to be your own.						

• You will only hand in this page, so be sure you have marked the answer sheet below correctly. Dotted lines and new columns indicate page breaks in the test.

• Be sure that you have all 15 pages of the test.

Good Luck!

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!											
1.	(ullet)	(b)	(c)	(d)	(e)	14.	(a)	(b)	(c)	(d)	(ullet)
2.	(a)	(ullet)	(c)	(d)	(e)	15.	(ullet)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(•)	(e)	16.	 (a)	(•)	(c)	(d)	 (e)
4.	(a)	(b)	(ullet)	(d)	(e)	17.	(a)	(ullet)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	···· (•)	18.	(a)	(b)	(●)	(d)	 (e)
6.	(a)	(ullet)	(c)	(d)	(e)	19.	(a)	(ullet)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(●)	20.	 (a)	(•)	(c)	(d)	 (e)
8.	(ullet)	(b)	(c)	(d)	(e)	21.	 (a)	(b)	(c)	(•)	 (e)
9.	(a)	(b)	(c)	(•)	(e)	22.	(a)	(b)	(ullet)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(ullet)	23.	 (a)	(b)	(c)	·····	 (e)
11.	(a)	(b)	(•)	(d)	(e)	24.	(ullet)	(b)	(c)	(d)	(e)
12.	(a)	(b)	(c)	(●)	(e)	25.	····	(b)	(c)	(d)	 (e)
13.	(ullet)	(b)	(c)	(d)	(e)						

Final Exam Total:	
Course Total:	