1. It is easy to show that the $f(x)=\ln \left(\frac{x-1}{x+1}\right)$ is defined for $x>1$ and is an increasing function. Find its inverse, f^{-1}.
(A) $\frac{1}{\ln \left(\frac{x-1}{x+1}\right)}$
(B) $\ln \left(\frac{x+1}{x-1}\right)$
(C) $\frac{\ln x-1}{\ln x+1}$
(D) $e^{\frac{x-1}{x+1}}$
(E) $\frac{1+e^{x}}{1-e^{x}}$
2. $f(x)=x^{3}+x-2$ is an increasing function. $\left(f^{-1}\right)^{\prime}(0)=$?
(A) $\frac{1}{3}$
(B) $\frac{1}{4}$
(C) $-\frac{1}{2}$
(D) $3(E) 1$
3. If $y=\sqrt[3]{\frac{(x-1)^{4}}{(x+1)^{2}}}$, then $\frac{d y}{d x} \quad x=0=$?
(A) -2
(B) 2
(C) -1
(D) $\frac{1}{3}$
(E) $\frac{4}{3}$
4. $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{\cos t}{2+\sin t} d t=$?
(A) 1
(B) $\frac{4}{3}$
(C) $\sqrt{2}$
(D) $2 \ln 2$
(E) $\ln 3$
5. Which of the following curves most closely resembles the graph of $y=$ $x e^{-x}$?
(A)
(B)
(C)
(D)
(E)
6. $\quad 2^{(\ln 3)\left(\log _{2} e\right)}=$?
(A) $\sqrt[3]{2}$
(B) e^{3}
(C) 3
(D) 8 (E) $\frac{\ln 3}{\ln 2}$
7. $\quad \int_{-\ln 4}^{\ln 4} \sqrt{\mathrm{e}^{\mathrm{x}}} d x=$?
(A) $\sqrt{2}-\frac{1}{\sqrt{2}}$
(B) 3 (C) $\mathrm{e}-\frac{1}{\mathrm{e}}$
(D) 2
(E) 1
8. A colony of bacteria grows at a rate proportional to the number present. If 500,000 are present at noon and 1,500,000 at 2 PM , then the number present at 6 PM is
(A) $13,500,000$
(B) 4,500,000
(C) $40,500,000$
(D) $364,500,000$
(E) $3,000,000$
9. $\lim _{x \not 00} \frac{\arctan x}{\sin x}=$?
(A) 0
(B) -1
(C) $-\infty$
(D) $\frac{\pi}{2}$
(E) 1
10. $\int_{0}^{\frac{1}{2}} \frac{\arcsin x}{\sqrt{1-x^{2}}} d x=$?
(A) $\frac{\pi}{24}$
(B) $\frac{1}{2 \pi}$
(C) $\frac{\pi^{2}}{72}$
(D) $\frac{1}{3 \sqrt{6}}$ $\frac{1}{4 \sqrt{2}}$
(E)
11. Where should the point P be chosen on the line segment $A B$ so as to maximize the angle θ ?
(Hint: the arc cotangent function is useful.)
(A) At a distance $\frac{\sqrt{10}}{6}$ from A
(B) At a distance $\frac{\sqrt{3}}{3}$ from A
(C) At a distance $(\sqrt{2}+\sqrt{5})-3$ from A
(D) At a distance $5-2 \sqrt{5}$ from A
(E) At a distance $5-3 \sqrt{2}$ from A
