Multiple Choice

1. (6 pts.) Suppose that $f(2)=3, f(3)=2, g(2)=3$ and $g(3)=1$.

What is $(f \circ g)(2)$?
(a) 3
(b) 6
(c) 1
(d) 2
(e) 9
2.(6 pts.) Calculate

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}-5 x+6} .
$$

(a) -4
(b) 1
(c) $-\infty$
(d) -1
(e) it does not exist
3. (6 pts.) Calculate

$$
\lim _{x \rightarrow 0^{-}} \frac{|x| \cos (x)}{x} .
$$

(a) $-\infty$
(b) 1
(c) -1
(d) ∞
(e) does not exist
4. (6 pts.) What is the equation of the tangent line to $y=\frac{1}{x^{2}}$ at the point $\left(2, \frac{1}{4}\right)$?
(a) $\quad y=\frac{-1}{4} x+\frac{-1}{4}$
(b) $\quad y=\frac{1}{4} x+\frac{3}{4}$
(c) $\quad y=\frac{1}{4} x+\frac{-1}{4}$
(d) $y=1-x$
(e) $\quad y=\frac{-1}{4} x+\frac{3}{4}$
5. (6 pts.) Which of the following functions has

$$
f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{1+h}{2+h}-\frac{1}{2}\right) ?
$$

(a) $\frac{1+x}{x(2+x)}$
(b) $\frac{x}{1+x}$
(c) $\frac{1}{x}$
(d) $\frac{1+3 x}{2+x}$
(e) none of the above
6. (6 pts.) What is the derivative of $y=x[[x]]$ at $x=0$?
(Recall that $[[x]]$ denotes the greatest integer $\leq x$.)
(a) 2
(b) 0
(c) $\quad-1$
(d) 1
(e) it does not exist, the function is not differentiable at $x=0$
7.(6 pts.) Which of the following is a reasonable graph of f^{\prime} given the graph of the function f below?

(b)

(c)

(d)

(e)

8. (6 pts.) If $f(2)=3, f^{\prime}(2)=2, g(2)=4, g^{\prime}(2)=5$ and $h(x)=f(x) g(x)$, what is $h^{\prime}(2)$?
(a) 7
(b) 10
(c) 26
(d) 23
(e) cannot be determined from the given data
9.(6 pts.) Let

$$
f(x)=\frac{\sin (x)+\cos (x)}{\cos ^{2}(x)}
$$

What is $f^{\prime}(0)$?
(a) 0
(b) -1
(c) 1
(d) ∞
(e) 2
10.(6 pts.) Find $\lim _{t \rightarrow 0} \frac{\sin (5 t)}{t}$.
(a) 5
(b) $\frac{1}{5}$
(c) $\frac{1}{25}$
(d) 1
(e) 25

Partial Credit

11. (10 pts.) Using the limit definition of the derivative, find $f^{\prime}(1)$ when $f(x)=\sqrt{x}$.
12. (10 pts.) A particle moves according to $s=90 t^{1 / 2}-25 t^{3 / 2}+3 t^{5 / 2}$ where $t \geq 0$ is measured in seconds and s in feet.
(a) Find the velocity at time $t=1$.
(b) At which time is the velocity of the particle zero?
(c) Find the distance covered between times $t=0$ and $t=1$.
13.(10 pts.) Define

$$
f(x)= \begin{cases}x & x \leq 1 \\ x^{3}+c x & x>1\end{cases}
$$

where c is a constant.
For which value(s) of c is the function f continuous for all real numbers?
14. (10 pts.) Let $f(x)=x^{2}+1$. For which values of a does the tangent line to $y=f(x)$ at the point $(a, f(a))$ intercept the y-axis at $(0,-3)$?

Name: \qquad
Instructor: \qquad

Exam I
September 25, 2001

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Good Luck!

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

1. (a)
(b)
(c)

-

(e)
2. (•)
(b)
(c)
(d)
(e)
3. (a)
(b)
(•)
(d)
(e)
4. (a)
(b)
(c)
(d)
(•)
5. (a)
(•)
(c)
(d)
(e)
6. (a)
(b)
(c)
(d)
(•)
7. (a)
(•)
(c)
(d)
(e)
8. (a)
(b)
(c)
(•)
(e)
9. (a)
(b)
(•)
(d)
(e)
10. (•)
(b)
(c)
(d)
(e)

DO NOT WRITE IN THIS BOX!

Total multiple choice: \qquad
11. \qquad
12. \qquad
13. \qquad
14. \qquad
Total:

