Multiple Choice

1.(5 pts.) If $f(2)=5, f(3)=2, f(4)=5, g(2)=6, g(3)=2$ and $g(4)=0$, find $(f g)(2)+(f \circ g)(3)$.
(a) 35
(b) 20
(c) 15
(d) 25
(e) 30
2. (5 pts.) Let a function $f(x)$ be given by $f(x)=\left\{\begin{array}{ll}2 x+2 & x>0 \\ -x+c & x \leq 0\end{array}\right.$. For what value of c is f continuous?
(a) There is no such c.
(b) $c=2$
(c) $c=3$
(d) $c=0$
(e) $c=1$
3. (5 pts.) Compute $\lim _{x \rightarrow 5} \frac{x-6}{x-5}$.
(a) 1.1
(b) $-\infty$
(c) $+\infty$
(d) Does not exist and is not ∞ or $-\infty$.
(e) 0
4. $(5$ pts. $)$ Compute $\lim _{x \rightarrow 5^{+}} \frac{x^{2}-25}{x-5}$.
(a) $+\infty$
(b) 10
(c) Does not exist and is not $+\infty$.
(d) 0
(e) 5
5. (5 pts.) Find $f^{\prime}(4)$ if $f(x)=4 \sqrt{x}-\frac{16}{\sqrt{x}}$.
(a) 2
(b) 4
(c) 0
(d) 3
(e) -1
6. $(5$ pts. $)$ Find $\frac{d f}{d x}$ if $f(x)=\left(x^{2}+1\right)\left(x^{3}+1\right)$.
(a) $5 x^{4}+8 x+1$
(b) $3 x^{4}\left(x^{3}+1\right)+\left(x^{2}+1\right)\left(4 x^{5}\right)$
(c) $6 x^{3}$
(d) $\left(x^{2}+1\right)\left(x^{3}+1\right)+(2 x)\left(3 x^{2}\right)$
(e) $2 x\left(x^{3}+1\right)+\left(x^{2}+1\right)\left(3 x^{2}\right)$
7. (5 pts.) Find $f^{\prime}(3)$ if $f(x)=\frac{x^{2}-x}{x+2}$.
(a) $\frac{19}{25}$
(b) $\frac{41}{25}$
(c) $\frac{25}{19}$
(d) $\frac{25}{41}$
(e) $\frac{29}{25}$
8. (5 pts.) Which line below is the tangent line to the graph of $y=\left(x^{2}-3 x+1\right)(x-3)$ when $x=3$.
(a) The tangent line at $x=3$ is vertical. (b) $y=2 x-3$
(c) $y=\left((2 x-3)(x-3)+\left(x^{2}-3 x+1\right)\right) x-3$ (d) $\quad y=x-3$
(e) $y=x+3$
9. (5 pts.) Given that f and g are differentiable at $x=3$ and that $f(3)=-1, g(3)=2$, $f^{\prime}(3)=3$ and $g^{\prime}(3)=-4$, what is $\left(\frac{g}{f}\right)^{\prime}(3)$?
(a) $-\frac{1}{2}$
(b) -2
(c) $-\frac{2}{9}$
(d) $\frac{1}{2}$
(e) 2
10. (5 pts.) For which graph below is $y=2 x+1$ a tangent line?
(a)

(b)

(c)

(d)

(e)

Partial Credit

You must show your work on the partial credit problems to receive credit!
11. (10 pts.) Let $f(x)=\frac{1}{x+1}$.
(a) Using the limit definition of the derivative, find f^{\prime}.
(b) Determine the domain of f^{\prime}.
12.(10 pts.) Let

$$
f(x)=\frac{x}{1+x^{2}}
$$

(a) Compute $f^{\prime}(x)$.
(b) Determine where $f^{\prime}(x)=0$.
13.(10 pts.) How and why can the Intermediate Value Theorem be used to show that

$$
y=f(x)=\frac{x^{3}-x-2}{x+1}
$$

has a root between $x=1$ and $x=2$?
14. (10 pts.) Draw the graph of a continuous function $y=f(x)$ with $f(0)=3, f^{\prime}(0)=-1$, $f^{\prime}(2)=0$, and $f^{\prime}(-2)=2$.

15. (10 pts.) A ball thrown in the air at $4 \mathrm{~m} / \mathrm{sec}$ on planet X has height $s(t)=4 t-3 t^{2}-t^{3}$ meters above the surface t seconds after it is thrown.
(a) Find the velocity at time t.
(b) Find the velocity when the ball hits the ground.

Name: \qquad
Instructor: \qquad

Exam I
September 24, 2002

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 6 pages of the test.

Good Luck!
PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!
1.
(b)
(c)
(d)
(e)
2. (a)
(•)
(c)
(d)
(e)
3. (a)
(b)
(c)
(•)
(e)
4. (a)
(•)
(c)
(d)
(e)
5. (•)
(b)
(c)
(d)
(e)
6. (a)
(b)
(c)
(d)
(•)
7. (•)
(b)
(c)
(d)
(e)
8. (a)
(b)
(c)
(•)
(e)
9. (a)
(•)
(c)
(d)
(e)
10. (a)
(b)
(•)
(d)
(e)

DO NOT WRITE IN THIS BOX!

Total multiple choice: \qquad
11. \qquad
12. \qquad
13. \qquad
14. \qquad
15. \qquad
Total:

