11. If we coordinatize so that the ladder is sliding down the y-axis and to the right along the x-axis, then we are being asked to compute $\frac{d y}{d t}$ when $x=10$ and $\frac{d x}{d t}=5$.

The relation between x and y is that $x^{2}+y^{2}=20^{2}$. Differentiating with respect to t we get $2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0$, or $\frac{d y}{d t}=-\frac{x}{y} \frac{d x}{d t}$.

When $x=10,10^{2}+y^{2}=20^{2}$ or $y^{2}=300$ or $y= \pm 10 \sqrt{3}$ and since we are on the positive side of the y-axis, $y=10 \sqrt{3}$. Hence $\frac{d y}{d t}=-\frac{10}{10 \sqrt{3}} \cdot 5=-\frac{5}{\sqrt{3}}$. We also accepted $\frac{5}{\sqrt{3}}$ as the rate the top of the ladder was sliding down.
12. $L(x)=f(a)+f^{\prime}(a)(x-a)$ with $f(x)=x^{1 / 3}$ and $x=27.3$ and $a=27$. $f^{\prime}(x)=$ $\frac{1}{3} x^{-2 / 3}, f(a)=(27)^{1 / 3}=3, f^{\prime}(a)=\frac{1}{3} \frac{1}{(27)^{2 / 3}}=\frac{1}{27}$. Thus, $L(27.3)=3+\frac{1}{27}(27.3-27)=$ $3+\frac{0.3}{27}$.
13. Differentiate implicitly to get

$$
15 x^{2} y^{\prime}+30 x y+10=2\left(x^{2}+y^{2}\right)\left(2 x+2 y y^{\prime}\right)
$$

Set $x=1$ and $y=2$ and solve for y^{\prime}.

$$
\begin{gathered}
15 y^{\prime}+60+10=2(1+4)\left(2+4 y^{\prime}\right) \\
50=25 y^{\prime} \\
y^{\prime}=2
\end{gathered}
$$

The tangent line is the line through $(1,2)$ with slope 2 .

$$
\begin{gathered}
y=2+2(x-1) \\
y=2 x
\end{gathered}
$$

14. Since $f(x)=x^{3}-12 x$ is continuous on the interval $[-3,5]$, it must have an absolute minimum and an absolute maximum and these must occur at critical points or at endpoints.

The critical points are given by setting $f^{\prime}(x)=3 x^{2}-12=0$ and solving for x. Since $3 x^{2}-12=3(x-2)(x+2)=0$, the critical points are $x= \pm 2$.

Checking the values of $f(x)$ at $x=-3,-2,2,5$, we see that $f(-3)=9, f(-2)=16$, $f(2)=-16$, and $f(5)=65$.

Thus on the interval $[-3,5], f(x)$ has an absolute minimum of -16 at $x=2$ and an absolute maximum of 65 at $x=5$.
15. $f(x)=\frac{1}{x}$ is differentiable for all real numbers $\neq 0$ since $f^{\prime}(x)=\frac{-1}{x^{2}}$. Therefore f is continuous for all real numbers $\neq 0$ since a function differentiable at a point is continuous at that point. But then f is continuous on the subinterval $[1,4]$ and differentiable on the subinterval $(1,4)$, so the Mean Value Theorem applies to this function on this interval.

The equation that the MVT asserts has a solution is the equation

$$
f^{\prime}(c)=\frac{f(4)-f(1)}{4-1} \quad \text { and } \quad c \in(1,4)
$$

For us, $f^{\prime}(c)=\frac{-1}{c^{2}}, f(4)=\frac{1}{4}, f(1)=1$, so $\frac{-1}{c^{2}}=\frac{\frac{1}{4}-1}{3}=\frac{-\frac{3}{4}}{3}=-\frac{1}{4}$, so $c^{2}=4$. This equation has solutions $c= \pm 2$, but the only solution satisfying our additional condition is $c=2$.

