Exam III December 4, 2001

11. The formula from Newton's method is $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ which in our case amounts to

$$x_1 = x_0 - \frac{x_0^3 + x_0^2 + 1}{3x_0^2 + 2x_0}$$

Compute $f(-2) = (-2)^3 + (-2)^2 + 1 = -8 + 4 + 1 = -3 < 0$ and $f(-1) = (-1)^3 + (-1)^2 + 1 = -1 + 1 + 1 = 1 > 0$ so by the Intermediate Value Theorem, there is at least one zero in this interval. (**Parenthetical Remark**: It is not hard to check that $3x^2 + 2x > 0$ on the interval [-2, -1] so f is increasing on this interval and so there is precisely one zero there.)

12. If the two sides of the rectangle are x and y, then the area is A = xy and the cost of fence is C = 10x + 20(x + 2y) = 30x + 40y, if we let x denote the length of the side with the fence. Since A = 80, $y = \frac{80}{x}$ and $C = 30x + 40 \cdot \frac{80}{x}$. We need to minimize C so compute $\frac{dC}{dx} = 30 - 40 \cdot \frac{80}{x^2}$. The critical points are x = 0 and $30 - 40 \cdot \frac{80}{x^2} = 0$, or $40 \cdot \frac{80}{x^2} = 30$, or $x^2 = \frac{40 \cdot 80}{30} = \frac{320}{3}$. Hence $x = \pm \sqrt{\frac{320}{3}}$. In our problem, x > 0 so $x = \sqrt{\frac{320}{3}}$, is a critical point. By the first derivative test, A has a local minimum at $x = \sqrt{\frac{320}{3}}$, and since $x = \sqrt{\frac{320}{3}}$ is the only critical point in the interval $(0, \infty)$, this local minimum is the absolute or global minimum.

Hence you should make the side with the fence $\sqrt{\frac{320}{3}}$ feet long and the other side of the rectangle should be $\frac{80}{\sqrt{\frac{320}{3}}}$ feet long. The total cost in dollars is $30 \cdot \sqrt{\frac{320}{3}} + 40 \cdot \frac{80}{\sqrt{\frac{320}{3}}} = 30 \cdot \sqrt{\frac{320}{3}} + 40 \cdot \sqrt{\frac{320}{3}} = 70 \cdot \sqrt{\frac{320}{3}}.$

13. You are being asked to minimize the distance from the point (x, x^2) on the parabola to the point (0, 1). A formula for this distance is $d = \sqrt{(x-0)^2 + (x^2-1)^2}$. You can simplify your work by minimizing d^2 but we will stick with d. Well, $d = \sqrt{x^2 + x^4 - 2x^2 + 1} = \sqrt{x^4 - x^2 + 1}$. The only critical points in this case occur where the derivative, $\frac{4x^3-2x}{2\sqrt{x^2+x^4-2x^2+1}}$, vanishes. But this happens if and only if $4x^3 - 2x = 0$ or when x = 0 or $x = \pm \sqrt{\frac{1}{2}}$. The sign of the derivative alternates as we pass through each critical point, so d has local minima at $\pm \sqrt{\frac{1}{2}}$ and a local maximum at 0. Since $\lim_{x \to \pm \infty} d = \infty$, it follows that the local minima are global or absolute minima. The corresponding points on the parabola are $\left(\pm \sqrt{\frac{1}{2}}, \frac{1}{2}\right)$.

14. Since $\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$ in general we proceed as follows. In our case, a = 0, b = 1 and $f(x) = 3x^{2} + 2$. Moreover, x_{i}^{*} is to be the right-hand end point of the *i*th interval. Then $\Delta x = \frac{b-a}{n} = \frac{1}{n}$ and the right-hand end point of the *i*th interval is given by $x_{i}^{*} = a + i\Delta x = \frac{i}{n}$. Hence we get $\int_{0}^{1} (3x^{2} + 2) dx = \lim_{n \to \infty} \sum_{i=1}^{n} \left(3\left(\frac{i}{n}\right)^{2} + 2\right) \frac{1}{n} = \lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{3i^{2}}{n^{3}} + \frac{2}{n} \right) =$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{3i^2 + 2n^2}{n^3} \right) = \lim_{n \to \infty} \frac{3\sum_{i=1}^{n} i^2 + 2n^2 \sum_{i=1}^{n} 1}{n^3} = \lim_{n \to \infty} \frac{3\frac{n(n+1)(2n+1)}{6} + 2n^3}{n^3} = \lim_{n \to \infty} \frac{n(n+1)(2n+1)}{2n^3} + \lim_{n \to \infty} 2 = 1 + 2 = 3.$$