To show there is only one root in the given interval, it suffices to show that p is strictly increasing or is strictly decreasing on this interval. By the Mean Value Theorem, this will follow if we can show $p^{\prime}(x)>0$ (strictly increasing) or $p^{\prime}(x)<0$ (strictly decreasing) on the relevant interval, $(0,1)$. Since p is a polynomial, it is differentiable, and hence continuous, everywhere and hence differentiable on $(0,1)$ and continuous on $[0,1]$ so the Mean Value Theorem can be applied.

Compute $p^{\prime}(x)=5 x^{4}+6 x^{2}+2$. This is obviously $\geq 2>0$ since $x^{4} \geq 0$ and $x^{2} \geq 0$. Hence $p(x)$ is strictly increasing on $[0,1]$ and so can have at most one root there. Begin with part b). Intervals of increase/decrease are determined by the sign of the first derivative. To determine these, locate the points where f^{\prime} is 0 , does not exist, or is not continuous. Since f is a polynomial, the derivative is defined and continuous everywhere, so we need to solve $f^{\prime}(x)=12 x^{3}-12 x^{2}=0$. The solutions are $x=0$ and $x=1$. Since $f^{\prime}(-1)=-12-12<0 ; f^{\prime}\left(\frac{1}{2}\right)=12 \cdot\left(\frac{1}{8}-\frac{1}{4}\right)<0$ and $f^{\prime}(2)=12 \cdot 8-12 \cdot 4=12 \cdot 4>0$, the signs are

0
1

Hence f is decreasing on $(-\infty, 1]$ and increasing on $[1, \infty)$. Indeed both the increase and decrease are strict.

Now for part a). There is a local minimum at $x=1$ and there are no local maxima. Since the interval $(-\infty, \infty)$ has no endpoints, there can be no extrema at the endpoints so there is no global maxima. There is a global minimum at $x=1$ since f decreases from $-\infty$ to 1 and then increases from 1 to ∞.

For part c) we need to study $f^{\prime \prime}(x)=36 x^{2}-24 x$. Since $f^{\prime \prime}$ is defined and continuous everywhere, the only relevant points are the solutions to $36 x^{2}-24 x=0$ or $x=0$ and $x=\frac{24}{36}=\frac{2}{3}$. Since $f^{\prime \prime}(-1)=36+24>0 ; f^{\prime \prime}\left(\frac{1}{2}\right)=\frac{36}{4}-\frac{24}{2}=9-12<0$ and $f^{\prime \prime}(2)=36 \cdot 4-24 \cdot 2>0$, the signs are

Hence f is concave up on $(-\infty, 0) \cup(23, \infty)$ and concave down on $(0,23)$. Inflection points occur at $x=0$ and at $x=23$. 13. The statement that the oil spill forms a circular region means that its area is $A=\pi r^{2}$, where r is its radius. Since the area is increasing at a rate of 100 square meters per hour, we have $\frac{d A}{d t}=100 \mathrm{~m}^{2} / \mathrm{hr}$. We are asked to find $\frac{d r}{d t}$ when $r=200 \mathrm{~m}$. Well $\frac{d A}{d t}=2 \pi r \frac{d r}{d t}$ by the Chain Rule, so

$$
\frac{d r}{d t}=\frac{\frac{d A}{d t}}{2 \pi r}=\frac{100 \mathrm{~m}^{2} / \mathrm{hr}}{2 \pi 200 \mathrm{~m}}=\frac{1}{4 \pi} \mathrm{~m} / \mathrm{hr}
$$

14. Answer: 12

Solution 1: $\Delta n \approx d n=n^{\prime}(t) d t$, and $n^{\prime}(t)=12 t, t=5, d t=\Delta t=5.2-5=0.2$. Thus $\Delta n \approx d n=60(0.2)=12$.

Solution 2: The linear approximation of $n(t)$ at $t=5$ is $L(t)=n(5)+n^{\prime}(5)(t-5)=350+60(t-5)$.

Thus $n(5.2) \approx L(5.2)=350+60(0.2)=350+12=362$. Thus $\Delta n=n(5.2)-n(5) \approx L(5.2)-L(5)=$ $362-350=12=d n$.
15. The function is continuous everywhere, hence on $[-2,2]$. Therefore the function has an absolute maximum and an absolute minimum. The derivative is $f^{\prime}(x)=-\frac{2}{3} x^{-13}=\frac{-2}{3 \sqrt[3]{x}}$ which is defined everywhere except $x=0$. Hence 0 is the only critical number. The global extrema must occur at a critical point or at an end point and since we are looking for the absolute extrema, we can proceed as follows. Calculate $f(0)=2 ; f(-2)=2-(-2)^{23}=2-\sqrt[3]{4}$ and $f(2)=2-(2)^{23}=2-\sqrt[3]{4}=f(-2)$. Since the cube root of 4 is positive, $2-\sqrt[3]{4}<2$ so $2=f(0)$ is the absolute maximum value and $2-\sqrt[3]{4}=f(\pm 2)$ is the absolute minimum value.

