N	ame:	
IN	ame:	

Multiple Choice

1.(5 pts.) Evaluate
$$\lim_{x \to -\infty} \frac{\sqrt{4x^6 + 3}}{x^3 + 2}$$

(a) 6 (b) -2 (c) 3/2 (d) 2 (e) 4

2.(5 pts.) If
$$f'(x) = \sqrt{x} + \frac{1}{\sqrt{x}}$$
 and $f(1) = \frac{8}{3}$, find the value of $f(4)$.
(a) 27/3 (b) 25/3 (c) 26/3 (d) 24/3 (e) 28/3

Name:	
riame.	

3.(5 pts.) Estimate the area under the graph of $f(x) = \frac{1}{x}$ from x = 1 to x = 3 using a subdivision of the interval into 4 equal subintervals and using values of f(x) at the **right-hand end-points** of the subintervals.

(a) 1 (b) 9/10 (c) 19/20 (d) 17/20 (e) 4/5

4.(5 pts.) Evaluate the following indefinite integral $\int \frac{\sin x}{\sqrt{2 + \cos x}} dx$ (a) $-2\sqrt{2 + \cos x} + C$ (b) $\frac{1}{\sqrt{(2 + \cos x)^3}} + C$ (c) $\sqrt{(2 + \cos x)^3} + C$ (d) $\frac{2\cos x}{\sqrt{2 + \sin x}} + C$

(e) $2\sqrt{2 + \sin x} + C$

Instructor: _____

5.(5 pts.) Evaluate the following definite integral
$$\int_{-8}^{0} \sqrt{64 - x^2} dx$$

(a) 16π (b) $8\sqrt{\pi}$ (c) 32π (d) 0 (e) 64π

6.(5 pts.) Let
$$F(x) = \int_0^{x^3} \sec t \, dt$$
 for $0 \le x \le 1$. What is $F'(x)$?

- (a) $\sec x^3$ (b) $\frac{x^4}{4} \sec x^3$ (c) $\sec x$
- (d) $3x^2 \sec(x^3)$ (e) $\sec(3x^2) + C$

7.(5 pts.) Evaluate the definite integral
$$\int_0^1 x^2(\sqrt{x}+3) dx =$$
?
(a) 5/3 (b) 9/2 (c) 9/7 (d) 7/5 (e) 5/2

8.(5 pts.) Evaluate the definite integral $\int_0^{\pi} (2x+1)\sin(x^2+x) dx$.

(a) 0 (b)
$$\sin(\pi^2 + \pi) - 1$$

(c) $2\cos(\pi^2 + \pi) - 2$ (d) $-\cos(\pi^2) + \cos(\pi + 1)$

(e) $-\cos(\pi^2 + \pi) + 1$

Name:

Instructor:

9.(5 pts.) Find the area of the region bounded by the curves $y = x^3 - x$ and y = 3x.

(a) 4 (b) 8 (c) -4 (d) 16 (e) 0

10.(5 pts.) The volume of the solid obtained by rotating the region bounded by $y = \sec x$, y = 1, x = -1 and x = 1 about the x-axis is given by which of the following integrals:

(a) $2\pi \int_0^1 x(1 - \sec x)^2 dx$ (b) $\pi \int_{-1}^1 x(\sec^2 x - 1)x dx$ (c) $\pi \int_{-1}^1 (1 - \sec^2 x) dx$ (d) $\pi \int_{-1}^1 (\sec^2 x - 1) dx$

(e)
$$\pi \int_{-1}^{1} (\sec x - 1)^2 dx$$

Name:	

Instructor: _____

Partial Credit

You must show your work on the partial credit problems to receive credit!

11.(10 pts.) Consider the function $y = \frac{x^2}{x^2+3}$

(a) On which intervals is the function decreasing?

Answer:

(b) On which intervals is the function concave up?

Answer: _____

(c) Does the function have any horizontal asymptotes and if so what are they?

Answer: _____

(d) Sketch the function on the next page. The top graph is for you to do your scratch work. Use the bottom graph for your final answer.

Ν	ame:	
	ame.	

Scratch work

Final answer

12.(10 pts.) A cylindrical can without a top is made to contain 1000 cm^3 of liquid. Find the dimensions of the can that will minimize the cost of the metal to make the can. Be sure to show that your answer is actually an absolute minimum.

Name:	Ν	ame:	
-------	---	------	--

13.(10 pts.) A particle is moving in a straight line with acceleration

$$a(t) = 1 + \cos t$$

and initial velocity v(0) = 0 and initial position s(0) = 0. Find the position of the particle at time t. Show your work.

Name:
r . contro.

14.(10 pts.) In attempting to solve the equation $2 - \sec x = \tan x$ on $[0, \frac{\pi}{2})$ by Newton's method we begin with $x_1 = \frac{\pi}{4}$. Find the value of x_2 in this process. Show your work.

15.(10 pts.) Use the washer method to find the volume of the solid obtained by rotating the region bounded by y = x + 2 and $y = 4x - x^2$ about the y-axis. XXXX line y = 3. Show your work.

Instructor: ANSWERS

Exam III locombor 2 200

- December 2, 2003
- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 12 pages of the test.

Good Luck!					
PLE	EASE MA	RK YOUR A	NSWERS W	VITH AN X	, not a circle!
1.	(a)	(ullet)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(ullet)
3.	(a)	(b)	(ullet)	(d)	(e)
4.	(ullet)	(b)	(c)	(d)	(e)
5.	(ullet)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(ullet)	(e)
7.	(a)	(b)	(ullet)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(ullet)
9.	(a)	(ullet)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(ullet)	(e)

DO NOT WRITE I	N THIS BOX!	
Total multiple choice:		
11.		
12.		
13.		
14.		
15.		
Total:		

Exam III December 2, 2003

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 12 pages of the test.

Good Luck!						
PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!						
1.	(a)	(b)	(c)	(d)	(e)	
2.	(a)	(b)	(c)	(d)	(e)	
3.	(a)	(b)	(c)	(d)	(e)	
4.	(a)	(b)	(c)	(d)	(e)	
5.	(a)	(b)	(c)	(d)	(e)	
6.	(a)	(b)	(c)	(d)	(e)	
7.	(a)	(b)	(c)	(d)	(e)	
8.	(a)	(b)	(c)	(d)	(e)	
9.	(a)	(b)	(c)	(d)	(e)	
10.	(a)	(b)	(c)	(d)	(e)	

DO NOT WRITE I	N THIS BOX!	
Total multiple choice:		-
11.		-
12.		-
13.		-
14.		-
15.		-
Total:		-