Multiple Choice

1.(5 pts.) Let f, g and h be any three functions such that f(2) = 3, g(2) = 5, h(2) = 1;f(3) = 3, g(3) = 2, h(3) = 5; f(5) = 2, g(5) = 1, h(5) = 3 and f(1) = 5, g(1) = 3,h(1) = 2. If

$$F(x) = (fg)(x) + (f \circ h)(x+1)$$

what is F(2)?

(a) 18 (b) 16 (c) 17 (d) 9

(e) Can not be determined from the given information.

2.(5 pts.) Compute the left handed limit
$$\lim_{u \to 1^{-}} \frac{u^2 - 1}{u^2 + 1}$$
.
(a) 0 (b) $-\infty$ (c) ∞ (d) 1

(e) Does not exist and is not ∞ or $-\infty$.

3.(5 pts.) Compute the right handed limit $\lim_{y \to \frac{\pi}{2}^+} \tan y$. (a) 0 (b) $-\infty$ (c) ∞ (d) 1

(e) Does not exist and is neither ∞ nor $-\infty$.

4.(5 pts.) The function $f(x) = \frac{x^2 - 1}{x^3 - 4x}$ is continuous everywhere except at

(a) $x = \pm 2$ (b) x = 0 and $x = \pm 1$

(c) $x = 0, x = \pm 1$ and $x = \pm 2$ (d) x = 0 and $x = \pm 2$

- (e) f is a rational function and so it is continuous everywhere.
- **5.**(5 pts.) If $f(x) = (x^2 + 3x)(6x^5 2x^8)$ compute f'(1). (a) 76 (b) 70 (c) -36 (d) 16 (e) 67

6.(5 pts.) If
$$f(x) = \sqrt[3]{x^5} + \frac{6}{\sqrt[5]{x^3}}$$
, then $f'(x) =$?
(a) $\frac{5\sqrt[3]{x^2}}{3} + \frac{5}{18\sqrt[5]{x^8}}$ (b) $\frac{3\sqrt[3]{x^2}}{5} - \frac{5}{18\sqrt[5]{x^8}}$ (c) $\frac{3\sqrt[3]{x^2}}{5} - \frac{18}{5\sqrt[5]{x^8}}$
(d) $\frac{3\sqrt[3]{x^2}}{5} + \frac{18}{18}$ (e) $\frac{5\sqrt[3]{x^2}}{5} - \frac{18}{18}$

(d)
$$\frac{3\sqrt{x^2}}{5} + \frac{18}{5\sqrt[5]{x^8}}$$
 (e) $\frac{5\sqrt{x^2}}{3} - \frac{18}{5\sqrt[5]{x^8}}$

7.(5 pts.) If
$$f(x) = \frac{x + \cos x}{x + \sin x}$$
 compute $f'(x)$.
(a) $\frac{(1 - \sin x)(x + \sin x) - (x + \cos x)(1 + \cos x)}{(x + \cos x)^2}$
(b) $\frac{(1 - \sin x)(x + \sin x) - (x + \cos x)(1 + \cos x)}{(x + \sin x)^2}$
(c) $\frac{(1 - \cos x)(x + \sin x) - (x + \cos x)(1 + \sin x)}{(x + \sin x)}$

(c)
$$(x + \cos x)^2$$

(d) $(1 - \cos x)(x + \sin x) - (x + \cos x)(1 + \sin x)$

(d)
$$\frac{(1-\cos x)(x+\sin x) - (x+\cos x)(1+\cos x)}{(x+\sin x)^2}$$

(e)
$$-\csc^2 x$$

8.(5 pts.) In preparation for Halloween, find all the horizontal tangent lines to the witch of Maria Agnesi. The witch of Maria Agnesi is the graph of $y = \frac{1}{1+x^2}$.

(a)
$$y = \pm \frac{1}{2}$$
 (b) $y = \frac{1}{2}$ (c) $y = 1$

(d)
$$y = \frac{1 - x^2}{(1 + x^2)^2}$$
 (e) $y = \frac{1}{3}$

9.(5 pts.) For which graph below is the slope of the tangent line at (1, f(1)) equal to 2?

10.(5 pts.) What is
$$\lim_{y \to \frac{\pi}{4}} \frac{(\tan y) - 1}{y - \frac{\pi}{4}}$$
?
(a) $\sec(2)$ (b) Does not exist. (c) 1 (d) 2
(e) $\frac{1}{2}$

Partial Credit You must show your work on the partial credit problems to receive credit!

11.(10 pts.) The limit $\lim_{x \to 0} \cos\left(\frac{1}{x}\right)$ does not exist, but the limit $\lim_{x \to 0} x \cos\left(\frac{1}{x}\right) = 0$. It follows that the function

$$f(x) = \begin{cases} x \cos\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0 \end{cases}$$

is continuous. It also follows easily that the function

$$g(x) = \begin{cases} x^2 \cos\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0 \end{cases}$$

is continuous.

- a) Using the definition of the derivative, show f is not differentiable at x = 0.
- b) Using the definition of the derivative, show g is differentiable at x = 0 and compute the value of g'(0).

12.(10 pts.) At what point(s) on the graph of the function $y = x^2 - 2x + 4$ does the tangent line at that point pass through the origin?

Hint: Write down the equation for the tangent line through the point $(a, a^2 - 2a + 4)$ and proceed from there.

13.(10 pts.) Show that the equation

$$\frac{\sin x}{x} = x$$

has at least one solution. Be sure to check the hypotheses of any theorem you might use.

14.(10 pts.) Draw a graph for a continuous function y = f(x) which satisfies all the conditions f(1) = 0, f'(1) = -1, f(0) = 1, f'(0) = 1 and f(-1) = 3.

15.(10 pts.) A missile is launched straight up with the engines firing in such a way that the height above the ground at all times is given by $s(t) = 12t - t^3$ where t is measured in minutes and s is measured in miles.

- a) How high does the missile get?
- b) What is the impact velocity? (The impact velocity is the instantaneous velocity the missile has as it hits the ground. This is not a trick question the answer is not 0.)

Instructor: ANSWERS

Exam I

September 25, 2003

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 6 pages of the test.

Good Luck!							
PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!							
1.	(a)	(b)	(ullet)	(d)	(e)		
2.	(ullet)	(b)	(c)	(d)	(e)		
3.	(a)	(ullet)	(c)	(d)	(e)		
4.	(a)	(b)	(c)	(ullet)	(e)		
5.	(ullet)	(b)	(c)	(d)	(e)		
6.	(a)	(b)	(c)	(d)	(•)		
7.	(a)	(ullet)	(c)	(d)	(e)		
8.	(a)	(b)	(ullet)	(d)	(e)		
9.	(a)	(b)	(c)	(d)	(ullet)		
10.	(a)	(b)	(c)	(ullet)	(e)		

DO NOT WRITE I	N THIS BOX!	
Total multiple choice:		-
11.		-
12.		-
13.		-
14.		-
15.		-
Total:		-