Multiple Choice

1.(5 pts.) If

$$f'(x) = \frac{(x-1)^2 x}{(x+1)^3}$$
,

find the local maxima and minima of f(x) assuming that the domain of f(x) is all $x \neq -1$. Note: you are given f', not f.

- (a) f has a local minimum at x = 0; f has local maxima at x = 1 and x = -1.
- (b) There are no local minima or local maxima.
- (c) f has a local minimum at x = 0; there is no local maximum.
- (d) f has a local minimum at x = 0; f has a local maximum at x = 1.
- (e) f has a local minimum at x = 1; f has a local maximum at x = -1.

2.(5 pts.) If

$$f'(x) = \frac{x}{1+x^2}$$

and if f(x) is defined for all x, find the x coordinates of the points of inflection. Note: you are given f', not f or f''.

- (a) Not enough information is given to find the points of inflection.
- (b) x = 1.
- (c) x = 0.
- (d) x = -1 and x = 1.
- (e) There are no points of inflection.

3.(5 pts.) If

$$y = \frac{\sqrt[3]{3x^3 + 2x + 3}}{2x + 4}$$

find the horizontal and vertical asymptotes.

- (a) $y = \frac{4}{3}$ is a horizontal asymptote; x = 2 is a vertical asymptote.
- (b) There are no horizontal asymptotes; x = -2 is a vertical asymptote.
- (c) $y = \frac{3}{2}$ is a horizontal asymptote; x = -2 is a vertical asymptote.
- (d) y = 0 is a horizontal asymptote; x = -2 is a vertical asymptote.

(e)
$$y = \frac{\sqrt[3]{3}}{2}$$
 is a horizontal asymptote; $x = -2$ is a vertical asymptote.

4.(5 pts.) Which formula below is the limit of Riemann sums for $\int_0^1 (1-x^2) dx$ using the **left-hand-end-point** Riemann sums?

(a)
$$\lim_{n \to \infty} \sum_{i=0}^{n-1} \left(1 - \frac{i^2}{n^2} \right) \cdot \frac{1}{n}$$
 (b) $\lim_{n \to \infty} \sum_{i=0}^n \left(1 - \frac{i^2}{n^2} \right) \cdot \frac{1}{n}$
(c) $\lim_{n \to \infty} \sum_{i=0}^{n-2} \left(1 - \frac{i^2}{n^2} \right) \cdot \frac{1}{n}$ (d) $\lim_{n \to \infty} \sum_{i=1}^n \left(1 - \frac{i^2}{n^2} \right) \cdot \frac{1}{n}$
(e) $\lim_{n \to \infty} \sum_{i=2}^n \left(1 - \frac{i^2}{n^2} \right) \cdot \frac{1}{n}$

5.(5 pts.) Calculate the following indefinite integral

$$\int \frac{x^2 + 1}{\sqrt{x}} dx =$$

(a)
$$\frac{\frac{x^3}{3} + x}{\frac{2}{3}x^{\frac{3}{2}}} + C.$$
 (b) $\frac{2}{5}x^{\frac{5}{2}} + 2x^{\frac{1}{2}} + C.$ (c) $\frac{2}{5}x^{\frac{5}{2}} + 2x^{\frac{1}{2}}.$

(d)
$$\frac{2}{5}x^{\frac{5}{2}} + \frac{2}{3}x^{\frac{1}{2}}$$
. (e) $\frac{2}{5}x^{\frac{5}{2}} + \frac{2}{3}x^{\frac{1}{2}} + C$.

6.(5 pts.) Calculate the following definite integral

$$\int_{0}^{3} |x-1| dx =$$
(a) $\frac{5}{2}$. (b) -2 . (c) $\frac{9}{2}$. (d) $\frac{3}{2}$. (e) 1.
7.(5 pts.) Let $g(x) = \int_{2}^{\sec x} \sqrt{1+t^{2}} dt$ with $0 \le x \le \frac{\pi}{3}$. What is $g'(x)$?
(a) $(\sqrt{1+\sec^{2} x}) \sec x \tan x$. (b) $g'(x)$ does not exist.
(c) $(\sqrt{1+x^{2}}) \sec x \tan x$. (d) $\sqrt{1+\sec^{2} x}$.

(e)
$$\left(\sqrt{1 + \sec^2 x}\right) \tan^2 x.$$

8.(5 pts.) What is the indefinite integral

$$\int x\sqrt{x-1}dx = ?$$

(a)
$$\frac{x^3}{3} - \frac{x^2}{2} + C.$$
 (b) $\frac{2}{5}x^{\frac{5}{2}} + \frac{2}{3}x^{\frac{3}{2}}.$

(c)
$$\frac{2}{5}x^{\frac{5}{2}} + \frac{2}{3}x^{\frac{3}{2}} + C.$$
 (d) $\frac{2}{5}(x-1)^{\frac{5}{2}} + \frac{2}{3}(x-1)^{\frac{3}{2}}.$

(e)
$$\frac{2}{5}(x-1)^{\frac{5}{2}} + \frac{2}{3}(x-1)^{\frac{3}{2}} + C.$$

9.(5 pts.) Find the definite integral

$$\int_{-1}^{1} x^3 (x^2 + 1)^2 \, dx \; .$$

(a)
$$\frac{17}{12}$$
. (b) $\frac{17}{24}$. (c) 2. (d) 0. (e) 1.

10.(5 pts.) Let $A = \int_0^1 \frac{x}{x+1} dx$. Which of the following is true of A? (a) $\frac{1}{2} \le A \le \frac{3}{4}$. (b) $\frac{-1}{4} \le A \le 0$. (c) A is undefined. (d) $0 \le A \le \frac{1}{2}$. (e) A = 0.

Partial Credit

You must show your work on the partial credit problems to receive credit!

11.(10 pts.) Answer the 8 questions, 1, 1a)-1c) and 2, 2a)-2c) below, and use your answers to graph

 $y = x + 2\cos x$

on the interval $[0, 2\pi]$? Use the back of the previous page for your calculations. 1) y' =_____

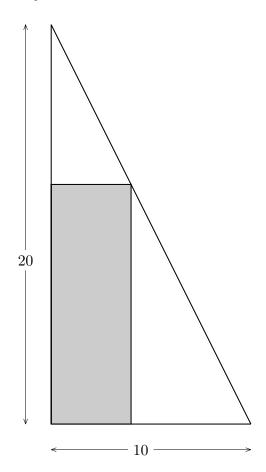

- a) On what interval(s) is y decreasing?
- b) Give both coordinates of any local maxima.
- c) Give both coordinates of any local minima.

2) y'' =_____

a) On what interval(s) is y concave down?

b) Give both coordinates of any points of inflection.

c) Give the slope of the tangent line at any points of inflection.


12.(10 pts.) A ball is thrown upward from a height of 256 feet above the ground, with an initial velocity of 96 feet per second. The velocity of the ball at time t is 96 - 32t feet per second.

- (a) Find s(t), the function giving the height of the ball at time t.
- (b) How long will the ball take to reach the ground?
- (c) How high will the ball go?

13.(10 pts.) Calculate the area bounded by the curves $y = x^2 + 2x + 3$ and y = 2x + 4.

14.(10 pts.) An open rectangular box (that is, a box with no top) with square base and with a volume of 125 cubic feet is needed. Material for the base costs \$6 per square foot, and material for the sides costs \$3 per square foot. Determine the dimensions of the box that will minimize the cost of materials. Justify that your answer is a minimum.

15.(10 pts.) **Determine the dimensions** of the rectangle of the largest area that can be inscribed in a right triangle with base 10 centimeters and height 20 centimeters. *Justify that your answer is a maximum.*

Instructor: ANSWERS

Exam III December 3, 2002

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 7 pages of the test.

Good Luck!							
PLE	ASE MARK	YOUR ANS	SWERS WI	TH AN X, n	ot a circle!		
1.	(a)	(b)	(ullet)	(d)	(e)		
2.	(a)	(b)	(c)	(ullet)	(e)		
3.	(a)	(b)	(c)	(d)	(ullet)		
4.	(ullet)	(b)	(c)	(d)	(e)		
5.	(a)	(ullet)	(c)	(d)	(e)		
6.	(ullet)	(b)	(c)	(d)	(e)		
7.	(ullet)	(b)	(c)	(d)	(e)		
8.	(a)	(b)	(c)	(d)	(ullet)		
9.	(a)	(b)	(c)	(ullet)	(e)		
10.	(a)	(b)	(c)	(ullet)	(e)		

DO NOT WRITE IN THIS BOX!					
Total multiple choice:		-			
11.					
12.					
13.					
14.		-			
15.		-			
Total:					