## Multiple Choice

**1.**(5 pts.) Evaluate  $\lim_{x \to -\infty} \frac{\sqrt{4x^6 + 3}}{x^3 + 2}$ 

(a)

(b) -2

(c) 3/2 (d)

(e)

**2.**(5 pts.) If  $f'(x) = \sqrt{x} + \frac{1}{\sqrt{x}}$  and  $f(1) = \frac{8}{3}$ , find the value of f(4).

27/3(a)

(b) 25/3

(c) 26/3

(d) 24/3

(e) 28/3

Estimate the area under the graph of  $f(x) = \frac{1}{x}$  from x = 1 to x = 3 using a subdivision of the interval into 4 equal subintervals and using values of f(x) at the **right-hand end-points** of the subintervals.

1 (a)

9/10(b)

(c) 19/20 (d) 17/20

(e) 4/5

**4.**(5 pts.) Evaluate the following indefinite integral  $\int \frac{\sin x}{\sqrt{2 + \cos x}} dx$ 

(a)  $-2\sqrt{2 + \cos x} + C$ 

(b)  $\frac{1}{\sqrt{(2+\cos x)^3}} + C$ 

(c)  $\sqrt{(2+\cos x)^3} + C$ 

(d)  $\frac{2\cos x}{\sqrt{2+\sin x}} + C$ 

(e)  $2\sqrt{2 + \sin x} + C$ 

**5.**(5 pts.) Evaluate the following definite integral  $\int_{0}^{0} \sqrt{64-x^2} dx$ 

(a)  $16\pi$ 

(b)  $8\sqrt{\pi}$ 

(c)  $32\pi$ 

(d) 0 (e)  $64\pi$ 

**6.**(5 pts.) Let  $F(x) = \int_0^{x^3} \sec t \, dt$  for  $0 \le x \le 1$ . What is F'(x)?

(a)  $\sec x^3$ 

(b)  $\frac{x^4}{4} \sec x^3$ 

(c)  $\sec x$ 

(d)  $3x^2 \sec(x^3)$ 

(e)  $\sec(3x^2) + C$ 

**7.**(5 pts.) Evaluate the definite integral  $\int_0^1 x^2(\sqrt{x}+3) dx = ?$ 

- (a) 5/3
- (b) 9/2
- (c) 9/7 (d) 7/5
- (e) 5/2

**8.**(5 pts.) Evaluate the definite integral  $\int_0^{\pi} (2x+1)\sin(x^2+x) dx$ .

(a) 0 (b)  $\sin(\pi^2 + \pi) - 1$ 

(c)  $2\cos(\pi^2 + \pi) - 2$ 

(d)  $-\cos(\pi^2) + \cos(\pi + 1)$ 

(e)  $-\cos(\pi^2 + \pi) + 1$ 

**9.**(5 pts.) Find the area of the region bounded by the curves  $y = x^3 - x$  and y = 3x.

- (a)
- 8 (b)
- (c)
- (d) 16
- (e)

**10.**(5 pts.) The volume of the solid obtained by rotating the region bounded by  $y = \sec x$ , y=1, x=-1 and x=1 about the x-axis is given by which of the following integrals:

(a)  $2\pi \int_{0}^{1} x(1-\sec x)^{2} dx$ 

(b)  $\pi \int_{-1}^{1} x(\sec^2 x - 1)x dx$ 

(c)  $\pi \int_{-1}^{1} (1 - \sec^2 x) dx$ 

(d)  $\pi \int_{-1}^{1} (\sec^2 x - 1) dx$ 

(e)  $\pi \int_{-1}^{1} (\sec x - 1)^2 dx$ 

## **Partial Credit**

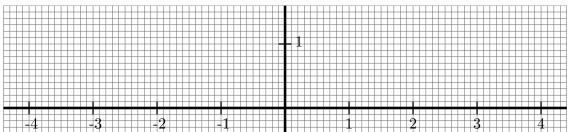
You must show your work on the partial credit problems to receive credit!

**11.**(10 pts.) Consider the function  $y = \frac{x^2}{x^2 + 3}$ 

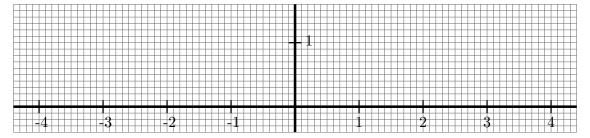
(a) On which intervals is the function decreasing?

Answer:

(b) On which intervals is the function concave up?


Answer:

(c) Does the function have any horizontal asymptotes and if so what are they?


Answer:

(d) Sketch the function on the next page. The top graph is for you to do your scratch work. Use the bottom graph for your final answer.

## Scratch work



## Final answer



- 12.(10 pts.) A cylindrical can without a top is made to contain 1000 cm<sup>3</sup> of liquid. Find the dimensions of the can that will minimize the cost of the metal to make the can. Be sure to show that your answer is actually an absolute minimum.
- **13.**(10 pts.) A particle is moving in a straight line with acceleration

$$a(t) = 1 + \cos t$$

and initial velocity v(0) = 0 and initial position s(0) = 0. Find the position of the particle at time t. Show your work.

- **14.**(10 pts.) In attempting to solve the equation  $2 \sec x = \tan x$  on  $[0, \frac{\pi}{2})$  by Newton's method we begin with  $x_1 = \frac{\pi}{4}$ . Find the value of  $x_2$  in this process. Show your work.
- **15.**(10 pts.) Use the washer method to find the volume of the solid obtained by rotating the region bounded by y = x + 2 and  $y = 4x x^2$  about the line y = 3. Show your work.

| еш  | at your na | one hour.<br>ame is on evo<br>ve all 6 page | ery page in o  | case pages be |                |  |
|-----|------------|---------------------------------------------|----------------|---------------|----------------|--|
| PLE | CASE MA    |                                             |                | WITH AN X     | , not a circle |  |
| . • | (a)        | <b>(●)</b>                                  | (c)            | (d)           | (e)            |  |
|     | (a)        | (b)                                         | (c)            | (d)           | (ullet)        |  |
|     | (a)        | (b)                                         | (ullet)        | (d)           | (e)            |  |
|     | (ullet)    | (b)                                         | (c)            | (d)           | (e)            |  |
|     | (ullet)    | (b)                                         | (c)            | (d)           | (e)            |  |
| •   | (a)        | (b)                                         | (c)            | (ullet)       | (e)            |  |
|     | (a)        | (b)                                         | (ullet)        | (d)           | (e)            |  |
|     | (a)        | (b)                                         | (c)            | (d)           | (ullet)        |  |
|     | (a)        | (ullet)                                     | (c)            | (d)           | (e)            |  |
| Э.  | (a)        | (b)                                         | (c)            | (•)           | (e)            |  |
|     |            |                                             | DO NOT W       | VRITE IN T    | HIS BOX!       |  |
|     |            | Tota                                        | al multiple cl | hoice:        |                |  |
|     |            |                                             | 11.            |               |                |  |
|     |            |                                             |                | 12.           |                |  |
|     |            |                                             |                |               |                |  |
|     |            |                                             |                | 13.           |                |  |
|     |            |                                             |                | 14.           |                |  |

15.

Total: