Math 125 Final Exam

May 6, 2004

Name:
You need not find derivatives or integrals by the limit definition.
Please show your work.
You are taking this exam under the honor code.

1. (5 pts .) Let y be given by the formula $x^{2}+y^{3}=2 x y$. Find y^{\prime}.
2. Let $f(x)=\frac{1}{2} \sin x+\cos x$.
(a) (4 pts.) Find $f^{\prime}(x)$.
(b) (5 pts.) What is $\int_{0}^{\pi} f(x) d x$?
3. (10 pts.) Let $f(x)=x^{2}-3 x+2$ and $g(x)=x-1$. Find the area enclosed by f and g.
4. (9 pts.) Round cookies are baking in the oven. Assume each cookie is always an even 1 cm thick and always circular. As they bake, the volume of each cookie increases at a rate of $0.5 \mathrm{~cm}^{3}$ per minute. How fast is the radius of a cookie increasing when that cookie has a radius of 2 cm ?
5. (12 pts.) Use the shell method to find the volume of the solid obtained by rotating the following region about the y-axis.

6. The velocity of a particle at time t, in meters per second, is given by $v(t)=t^{2}-4$.
(a) (5 pts.) If the position of the particle at time $t=1$ is $\frac{4}{3}$, find the position function for the particle.
(b) (4 pts.) What is the acceleration of the particle at time t ?
(c) (2 pts.) When does the particle achieve an acceleration of $6 \mathrm{~m}^{2}$ per second?
7. For each of the following functions, find the limit of the function as x approaches infinity.
(a) (4 pts.) $h(x)=\frac{x^{3}+15 x-100}{x^{4}+5}$
(b) (4 pts.) $g(x)=\frac{x^{3}}{2 x^{3}+3 x^{2}+x+12}$
(c) (4 pts.) $f(x)=\frac{2 x^{2}+2 x-5}{x}$
8. Given $f(x)=1 / x, g(x)=x^{2}+2 x$, and $h(x)=x+1$, find the following functions.
(a) (3 pts.) $g \circ f(x)$
(b) (3 pts.) $f \circ h(x)$
9. (5 pts .) Find the average value of $f(x)=2 \sqrt{x}$ on the interval [0,4$]$, and a value c in the interval such that $f(c)$ is the average value of f.
10. (12 pts.) Use the method of slicing to find the volume of the solid obtained by rotating the following region about the y-axis.

11. (10 pts.) A box with a square base is to be made to hold $10 \mathrm{ft}^{3}$ of material. The box will also contain two shelves parallel to the base (see figure). The material for the outside of the box costs $\$ 4$ per square foot, and the material for the shelves costs $\$ 1$ per square foot. If the base of the box is x by x meters, and the height is y, what should x and y be to minimize the cost of the box?

12. Let $f(x)=\frac{1}{2} x^{4}-3 x^{2}+1$.
(a) (6 pts.) Find all critical points of $f(x)$.
(b) (4 pts.) On what intervals is f increasing or decreasing?
(c) (6 pts.) Find all potential inflection points of $f(x)$.
(d) (4 pts.) On what intervals is f concave up or concave down?
13. (6 pts.) Let $f(x)=\frac{3 x^{4}-87 x^{2}+300}{x^{4}}$. The following is a partial graph of f, showing all x-intercepts. Complete the graph by finding the behavior of f near $x=0$ and as x approaches $\pm \infty$.

14. Evaluate the following limits or state why they do not exist.

$$
f(x)= \begin{cases}\frac{x^{2}-1}{x+1} & \text { if } x \leq 2 \\ 2 x & \text { if } x>2\end{cases}
$$

(a) (5 pts.) $\lim _{x \rightarrow(-1)} f(x)$
(b) (5 pts.) $\lim _{x \rightarrow 2^{-}} f(x)$
(c) (5 pts.) $\lim _{x \rightarrow 2^{+}} f(x)$
(d) (2 pts.) $\lim _{x \rightarrow 2} f(x)$
15. (6 pts.) Evaluate the following integral.

$$
\int_{0}^{\pi} 2 x \cos \left(x^{2}\right) d x
$$

16. (Extra Credit - 5 pts.) We used finite approximation and limits to define both derivatives and integrals. Choose one of those definitions and explain it in your own words (avoiding mathematical notation when possible).
