Math 125 Test 3

April 7, 2004

Name: \qquad
You are taking this exam under the honor code.

You need not find derivatives by the definition. Please show your work.

1. (7 pts.) The acceleration of a particle at time t is given by $a(t)=2 t+2$. If the velocity of the particle at time 0 is -3 , find the velocity function for the particle.
2. (12 pts.) Let $f(x)=\frac{(x+4)(x-5)}{x^{3}}$. Find the vertical and horizontal asymptotes of f (if they exist) and the intercepts. Using that and the following information, sketch a rough graph of f.

- $f^{\prime}(x)$ is positive on the intervals $(-6.8,0)$ and $(0,8.8)$, and negative on $(-\infty,-6.8)$ and $(8.8, \infty)$.
- $f^{\prime \prime}(x)$ is positive on the intervals $(-9.6,0)$ and $(12.6, \infty)$, and negative on $(-\infty,-9.6)$ and $(12.6, \infty)$.

3. (15 pts.$)$ For each of the following functions, find the limit of the function as x approaches infinity. If the function has a slant asymptote, find the equation of the asymptote.
(a) $g(x)=\frac{4 x^{3}}{2 x^{3}+3 x^{2}+x-15}$
(b) $f(x)=\frac{2 x^{2}+5}{x-3}$
(c) $h(x)=\frac{x^{3}-2 x+10}{x+5}$
4. (12 pts.) A box with a square base is to be made to hold $16 \mathrm{~m}^{3}$ of material. The box has to be made to stack, so the materials for the top and bottom cost $\$ 10$ per square meter, while the sides only cost $\$ 5$ per square meter. If the base of the box is x by x meters, and the height is y, what should x and y be to minimize the cost of the box?
5. Let $f(x)=2 x+\cos x$.
(a) (4 pts.) Find the most general antiderivative of f.
(b) (4 pts.) Use part (a) and the Fundamental Theorem of Calculus to evaluate $\int_{0}^{\pi} f(x) d x$.
6. (4 pts.) Find $\frac{d}{d x} \int_{0}^{x}\left(\sin (2 t+5)+t^{4}\right) d t$.
7. (9 pts.) Find the Riemann sum approximation for the area under $f(x)=x^{2}-1$ on the interval $[1,5]$, using $\Delta x=1$. You may use either the left or right endpoint method, but you must state which method you use.
8. (16 pts.) Let $f(x)=x^{4}-6 x^{2}+5$. Find the extreme points of f, its intervals of increase and decrease, the inflection points of f, and its intervals of positive and negative concavity, and use them to sketch a graph of f. A Cartesian plane is provided on the next page. To assist you, below are some values of f, f^{\prime}, and $f^{\prime \prime}$, as well as the approximate numerical values of some square roots.

x	$f(x)$	x	$f^{\prime}(x)$	x	$f^{\prime \prime}(x)$	x	\sqrt{x}
-4	165	-4	-208	-5	288	2	1.4
$-\sqrt{3}$	-4	-2	-8	-3	96	3	1.7
-1	0	-1	8	0	-12	5	2.2
0	5	1	-8	3	96	7	2.6
1	0	2	8	5	288		
$\sqrt{3}$	-4	4	208				
4	165						

9. (12 pts.) Using the Riemann sum definition of the definite integral, find $\int_{0}^{1} \frac{x^{2}}{2} d x$. Some sum formulas are given.

$$
\begin{gathered}
\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \\
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \\
\sum_{i=1}^{n} i^{3}=\left[\frac{n(n+1)}{2}\right]^{2}
\end{gathered}
$$

10. (5 pts.) Suppose $\int_{-2}^{3} f(x) d x=12$ and $\int_{3}^{-4} f(x) d x=-15$. What is $\int_{-4}^{-2} f(x) d x$?
11. (3 pts.) Extra credit: If $u=x^{2}-1$, find

$$
\frac{d}{d x} \int_{0}^{u}\left(t^{2}+t+1\right) d t
$$

