1.
$$\int_{1}^{e} 6x^{5} \ln(x^{2}) dx = ?$$

- (A) $5e^6 1$
- (B) $\frac{1}{3}$ [5e⁶ + 1]
- (C) $5e^6 + 1$
- (D) $\frac{1}{3}$ [$5e^6 2$]
- (E) $2e^{6}$

- 2. Which of the following fractions occurs as a summand in the partial fraction decomposition of $\frac{10x - 4}{x^3 - 4x}$?

- (A) $\frac{-4}{x-2}$ (B) $\frac{-3}{x-2}$ (C) $\frac{2}{x-2}$ (D) $\frac{3}{x-2}$ (E) $\frac{-1}{x-2}$

3.
$$\int_{2}^{3} \frac{x^3 + x^2 + 1}{x^2 - x} dx = ?$$

(A)
$$\frac{1}{2}$$
 + ln 3

(B) 4 +
$$\ln \frac{27}{2}$$

(C) 8 + 3ln
$$\frac{3}{2}$$

(D)
$$\frac{1}{2} + \ln \frac{27}{2}$$

(E) 8 +
$$\ln \frac{27}{2}$$

4. Suppose the appropriate trigonometric substitution is made in the following integral. What trigonometric integral is obtained from making this substitution?

$$\int \frac{(1-x^2)^{5/2}}{x^6} \ dx$$

(A)
$$\int \cot^6 \theta \, d\theta$$

(B)
$$\int \cot^6 \theta \cos^5 \theta d\theta$$

(C)
$$\int \tan^5 \theta \csc \theta d\theta$$

(D)
$$\int \cot^5 \theta \csc \theta d\theta$$

(E)
$$\int \tan^6 \theta \ d\theta$$

5.
$$\int_{-1}^{0} \frac{dx}{x^2 + 2x + 2} = ?$$

- (A) 0
- (B) $\frac{\pi}{6}$
- (C) $\frac{\pi}{4}$
- (D) $\frac{\pi}{3}$
- (E) $\frac{\pi}{2}$

6.
$$\int_{1}^{3} \frac{2x}{(x^2 - 1)^{1/2}} dx = ?$$

- (A) Diverges
- (B) √2
- (C) $2\sqrt{2}$
- (D) $3\sqrt{2}$
- (E) $4\sqrt{2}$

Which of the following improper integrals converge and which diverge? 7.

1.
$$\int_{2}^{\infty} \frac{1}{e^{x}} dx$$

$$2. \int_{2}^{\infty} \frac{1}{x+4} dx$$

1.
$$\int_{2}^{\infty} \frac{1}{e^{x}} dx$$
 2. $\int_{2}^{\infty} \frac{1}{x+4} dx$ 3. $\int_{2}^{\infty} \frac{1}{\sqrt{x+1}} dx$

(A) (1) converges, (2) and (3) diverge

- (1) and (3) converge, (2) diverges
- none converge, (1) and (2) and (3) diverge
- (D) (2) and (3) converge, (1) diverges
- (E) (3) converges, (1) and (2) diverge

8.
$$\lim_{n \to \infty} \frac{2n + (-1)^n + \cos n}{n} = ?$$

- (A) Diverges (B) 0 (C) 2 (D) 3 (E) 4

9.
$$\lim_{n \boxtimes 0} \frac{\ln (n+1)}{\sqrt{n}} = ?$$

- (A) Diverges (B) 1 (C) $\frac{1}{2}$ (D) 0 (E) In 2

10.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2 \cdot 3^n} = ?$$

- (A) $3(B) \frac{3}{8}$ (C) $-\frac{1}{3}$ (D) $\frac{3}{7}$ (E) $-\frac{1}{6}$

Which of the following infinite series converge and which diverge? 11.

- (1) $\sum_{n=1}^{\infty} \frac{1}{(2n)!}$ (2) $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$ (3) $\sum_{n=1}^{\infty} \frac{1}{n}$ (4) $\sum_{n=1}^{\infty} \left(\frac{3}{2}\right)^n$
- (A) (1) and (4) converge, (2) and (3) diverge
- (B) (1) and (2) converge, (3) and (4) diverge
- (C) (1) converges, (2) and (3) and (4) diverge
- (D) (2) converges, (1) and (3) and (4) diverge
- (E) (2) and (3) converge, (1) and (4) diverge

12. Which of the following infinite series converge and which diverge?

$$\sum_{n=1}^{\infty} \ln \left(\frac{1}{n^2} \right)$$

(2)
$$\sum_{n=1}^{\infty} \frac{2 + \cos n}{n^4}$$

(3)
$$\sum_{n=1}^{\infty} \frac{n^2 + 2}{n^4 - n^{1/3}}$$

- (A) (1) and (2) converge, (3) diverges
- (B) (2) and (3) converge, (1) diverges
- (C) (1) converges, (2) and (3) diverge
- (D) (3) converges, (1) and (2) diverge
- (E) (1) and (2) and (3) converge, none diverge

13. Suppose the Integral Test is applied to the following infinite series. What is the best information that this test provides?

$$\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$$

- (A) diverges
- (B) converges and the test gives an upper bound 1
- (C) converges and the test gives an upper bound 2
- (D) converges and the test gives an upper bound 3
- (E) Converges and the test gives an upper bound 4

14. Suppose the Ratio Test is applied to each of the following infinite series. What information does this test provide?

(1)
$$\sum_{n=1}^{\infty} \frac{\ln r}{n}$$

(2)
$$\sum_{n=1}^{\infty} \frac{n^2 + n}{2^n}$$

(3)
$$\sum_{n=1}^{\infty} \frac{n!}{2^n}$$

- (A) (2) converges, (3) diverges, no information about (1)
- (B) (2) & (3) converge, (1) diverges
- (C) (1) & (2) diverge, no information about (3)
- (D) (1) converges, (2) & (3) diverge
- (E) (2) & (3) converge, no information about (1)

15. Prove that $\lim_{n \neq 0} (1 + \frac{c}{n})^n = e^c$ for any real number c.

Please record a copy of your proof on the front page.