1. The function $f(x) = \ln x + \arctan x$ has an inverse function g(x). Moreover: $f(1) = \frac{\pi}{4}$. What is $\frac{dg}{dx} \left(\frac{\pi}{4}\right)$?

(A)
$$\frac{2}{3}$$
 (B) $\frac{2}{\sqrt{\pi}}$ (C) $\frac{1}{2}$ (D) $\frac{2}{e}$ (E) 1

2. Suppose
$$y = \frac{e^{2x}}{1 + e^{2x}}$$
. What is $\frac{dy}{dx}$ when $x = 0$?
(A) 2e (B) e^{-2} (C) $\frac{1}{2}$ (D) $\frac{\pi}{2}$ (E) 2

3. What is
$$\int_{1}^{2} \frac{dx}{\sqrt{-x^{2}+2x}}$$
?
(A) $-\frac{\pi}{2\sqrt{2}}$ (B) $\frac{\pi}{2}$ (C) $-\frac{\pi}{2}$ (D) $\frac{\pi}{\sqrt{2}}$ (E) $\frac{\pi}{2\sqrt{2}}$

4. In the partial fraction decomposition of the function, what is the numerator of the term whose denominator is x^2 ?

$$\frac{x^2+2}{x^2(x+1)}$$

(A) - 2 (B) 2 (C) - 1 (D) 1 (E) 0

5. On the interval $(0, \infty)$, what is solution of the following initial value problem ? $\frac{dy}{dx} = \frac{3x^3 + 1}{xe^y}$

(A)
$$e^{y} = x^{3} + \ln(x) + 1$$

(B) $e^{y} = x^{3} + \ln(2x)$
(C) $y = \ln(x^{3}) + \ln(\ln(x)) + 2$
(D) $y = \ln(x^{3}) + \ln(\ln(x)) + \ln 2$
(E) $e^{y} = x^{3} + \ln(x)$

 $y(1) = \ln 2$.

6. Compute
$$\int_{0}^{\pi} x \cos x \, dx$$
.
(A) 1 (B) -1 (C) 2 (D) -2 (E) 0

7. Evaluate the following integral:

(A) 0 (B) -1 (C)
$$\ln \frac{\pi}{2}$$
 (D) 1 (E) diverges

8. How many of the following series are convergent?

	∑ n=1	$\frac{1}{n(n+1)}$	$\sum_{n=0}^{\infty} \frac{3^n}{n!}$	$\sum_{n=1}^{\infty}$	<u>(-1)ⁿ n</u>	$\sum_{n=0}^{\infty}$	3 ⁿ 7 ⁿ	
(A)	one	(B)	two	(C) three	(D)	four	(E)	none

- 9. Which of the following statements is true of the series $\sum_{n=2}^{\infty} \frac{1}{\ln(n^n)}$?
 - (A) The series diverges by the integral test
 - (B) The series converges by the integral test
 - (C) The series diverges by the ratio test
 - (D) The series converges by the ratio test
 - (E) None of above

10. What is the radius of convergence of the following power series?

$$\sum_{n=1}^{\infty} \frac{x^{n}}{(2n)!}$$
(A) ∞ (B) 0 (C) 1 (D) ln 2 (E) 2

11. The first several terms of the Maclaurin series generated by the function f(x) are:

$$f(x) = 1 + x - \frac{1}{2} x^2 + \frac{1}{7} x^3 - \frac{1}{11} x^4 + \dots$$

What is f⁽³⁾(0)?

(A)
$$\frac{1}{2T}$$
 (B) $-\frac{1}{2}$ (C) $\frac{1}{7}$ (D) $\frac{6}{7}$ (E) $-\frac{12}{TT}$

12. What is the coefficient of x^2 in $(1 + x)^{100}$?

(A) 19800 (B) 4950 (C) $\frac{199}{2}$ (D) 9900 (E) 199

- 13. What is the slope of the line tangent to the curve $x = 1 \cos t$, $y = \sin t t$ at the point corresponding to $t = \frac{\pi}{3}$?
 - (A) 1 (B) $\frac{\pi}{2}$ (C) $-\frac{1}{2}$ (D) $\frac{\sqrt{3}}{2}$ (E) $-\frac{1}{\sqrt{3}}$

14. The following is the equation, in polar coordinates, of a circle: $r=\sin\,\theta\;.$

Find the rectangular coordinates of the center of this circle.

(A)
$$\left(\frac{\pi}{2}, 0\right)$$
 (B) (1, 0) (C) $\left(0, \frac{\pi}{2}\right)$ (D) $\left(0, \frac{1}{2}\right)$ (E) (0, -1)

Partial Credit Problem

15. What is
$$\lim_{X \oslash \infty} \left(\frac{x+1}{x-1} \right)^x$$
 ?

16. What is
$$\int_{1}^{\infty} \frac{1}{x^2 + x} \, dx$$
 ?

17. Express the following integral as a power series,

$$\int_{0}^{0.1} x^2 e^{-x^2} dx$$

- 18. What are the four points of intersection of the following pair of curves ? $r = \cos^2 \theta$ $r = \frac{1}{4}$
- 19. Prove the following theorem. <u>Theorem</u>: $\lim_{X \boxtimes \infty} \left(1 + \frac{c}{n}\right)^n = e^c$
- 20. Prove the following theorem.

<u>Theorem</u>: Suppose f is a nonnegative continuous decreasing function on the interval $(1, \infty)$ and $\int_{1}^{\infty} f(x) dx < \infty$. Suppose $a_k = f(k)$ for k = 1, 2, 3, Then $\sum_{k=1}^{\infty} a_k$ converges and $\sum_{k=1}^{\infty} a_k \le a_1 + \int_{1}^{\infty} f(x) dx$