§6.1

- #13. $y = x^2 + 1$, $x^2 = y 1$, $x = \pm \sqrt{y 1}$, so $f^{-1}(x) = \sqrt{x 1}$ and we want the plus sign because the domain of f is $x \ge 0$.
- #15. $y = x^3 1$, $x^3 = y + 1$, $x = \sqrt[3]{y+1}$, so $f^{-1}(t) = \sqrt[3]{t+1}$.
- #23. $y = \frac{1}{x^2}$, $x^2 = \frac{1}{y}$, $x = \frac{\pm 1}{\sqrt{y}}$, so $f^{-1}(x) = \frac{1}{\sqrt{x}} = x^{-1/2}$ since the domain of f is x > 0. The domain of f^{-1} is all x > 0; the range of f^{-1} is all x > 0. These follow from the corresponding results for f. For f, we were told that the domain is x > 0. This gives the range of f^{-1} . By definition the range consists of all numbers y so that we can solve the equation $\frac{1}{x^2} = y$ with x > 0. This in turn is all y, y > 0, which gives the range of f and the domain of f^{-1} .

#31.
$$f(x) = x^3 - 3x^2 - 1, x \ge 2$$
; find $\frac{df^{-1}}{dx}$ at $x = -1$. Formula: $\frac{df^{-1}}{dx}(a) = \frac{1}{f'((f^{-1}(a)))}$. We want $\frac{df^{-1}}{dx}(-1)$ so what is $f^{-1}(-1)$? Equivalently, solve $f(a) = -1$ and we are told

that the answer is 3. Since $f'(x) = 3x^2 - 6x$, $\frac{df^{-1}}{dx}(-1) = \frac{1}{3(3^2) - 6\cdot 3} = \frac{1}{9}$.

- #33. This problem is another application of the formula in the last problem. Since (2, 4) is on the graph of f, (4, 2) is on the graph of f^{-1} , or $f^{-1}(4) = 2$. The slope of f at 2 is $\frac{1}{3}$ and you may proceed either of two ways. Algebraic: $f'(2) = \frac{1}{3}$; $\frac{df}{dx}^{-1}(4) = \frac{1}{f'(2)}$ since $f^{-1}(4) = 2$. Hence $\frac{df}{dx}^{-1}(4) = 3$. Geometric: 1 equals the slope of a line times the slope of that line reflected in y = x. Hence $\left(\frac{df}{dx}^{-1}(4)\right) \cdot f'(2) = 1$.
- #43. $f(x) = (1-x)^3$; $f'(x) = -3(1-x)^2$. Hence $f'(x) \le 0$ and is equal to 0 only if x = 1. Hence f is decreasing and therefore one to one. $\frac{df^{-1}}{dx}(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{-3(1-f^{-1}(x))^2}$. To continue, we need a formula for f^{-1} : $y = (1-x)^3$, $\sqrt[3]{y} = 1-x$, $x = 1 - \sqrt[3]{y}$, so $f^{-1}(x) = 1 - \sqrt[3]{x}$. Hence $\frac{df^{-1}}{dx}(x) = \frac{1}{-3(1-(1-\sqrt[3]{x}))^2} = \frac{1}{-3(\sqrt[3]{x})^2} = \frac{1}{-3x^{2/3}} = -\frac{1}{3}x^{-2/3}$.