$\S 6.1$

\#13. $y=x^{2}+1, x^{2}=y-1, x= \pm \sqrt{y-1}$, so $f^{-1}(x)=\sqrt{x-1}$ and we want the plus sign because the domain of f is $x \geq 0$.
\#15. $y=x^{3}-1, x^{3}=y+1, x=\sqrt[3]{y+1}$, so $f^{-1}(t)=\sqrt[3]{t+1}$.
\#23. $y=\frac{1}{x^{2}}, x^{2}=\frac{1}{y}, x=\frac{ \pm 1}{\sqrt{y}}$, so $f^{-1}(x)=\frac{1}{\sqrt{x}}=x^{-1 / 2}$ since the domain of f is $x>0$. The domain of f^{-1} is all $x>0$; the range of f^{-1} is all $x>0$. These follow from the corresponding results for f. For f, we were told that the domain is $x>0$. This gives the range of f^{-1}. By definition the range consists of all numbers y so that we can solve the equation $\frac{1}{x^{2}}=y$ with $x>0$. This in turn is all $y, y>0$, which gives the range of f and the domain of f^{-1}.
\#31. $f(x)=x^{3}-3 x^{2}-1, x \geq 2$; find $\frac{d f^{-1}}{d x}$ at $x=-1$. Formula: $\frac{d f^{-1}}{d x}(a)=\frac{1}{f^{\prime}\left(\left(f^{-1}(a)\right)\right.}$. We want $\frac{d f^{-1}}{d x}(-1)$ so what is $f^{-1}(-1)$? Equivalently, solve $f(a)=-1$ and we are told that the answer is 3 . Since $f^{\prime}(x)=3 x^{2}-6 x, \frac{d f^{-1}}{d x}(-1)=\frac{1}{3\left(3^{2}\right)-6 \cdot 3}=\frac{1}{9}$.
\#33. This problem is another application of the formula in the last problem. Since $(2,4)$ is on the graph of $f,(4,2)$ is on the graph of f^{-1}, or $f^{-1}(4)=2$. The slope of f at 2 is $\frac{1}{3}$ and you may proceed either of two ways. Algebraic: $f^{\prime}(2)=\frac{1}{3} ; \frac{d f^{-1}}{d x}(4)=\frac{1}{f^{\prime}(2)}$ since $f^{-1}(4)=2$. Hence $\frac{d f^{-1}}{d x}(4)=3$. Geometric: 1 equals the slope of a line times the slope of that line reflected in $y=x$. Hence $\left(\frac{d f^{-1}}{d x}(4)\right) \cdot f^{\prime}(2)=1$.
\#43. $f(x)=(1-x)^{3} ; f^{\prime}(x)=-3(1-x)^{2}$. Hence $f^{\prime}(x) \leq 0$ and is equal to 0 only if $x=1$. Hence f is decreasing and therefore one to one. $\frac{d f^{-1}}{d x}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}=\frac{1}{-3\left(1-f^{-1}(x)\right)^{2}}$. To continue, we need a formula for $f^{-1}: y=(1-x)^{3}, \sqrt[3]{y}=1-x, x=1-\sqrt[3]{y}$, so $f^{-1}(x)=1-\sqrt[3]{x}$. Hence $\frac{d f^{-1}}{d x}(x)=\frac{1}{-3(1-(1-\sqrt[3]{x}))^{2}}=\frac{1}{-3(\sqrt[3]{x})^{2}}=\frac{1}{-3 x^{2 / 3}}=-\frac{1}{3} x^{-2 / 3}$.

