
§6.3

#1. a) eln 7.2 = 7.2: since (eln x = x).

b) e− ln x2
= e− ln(x2) = 1

eln(x2)
= 1

x2 = x−2.

c) eln x−ln y = eln x

eln y = x
y .

#3. a) 2 ln
√

e = 2 ln(e1/2) = 2 · 1
2 · ln e = 2 1

2 · 1 = 1.
b) ln(ln ee) = ln(e ln e) = ln(e · 1) = ln e = 1.

c) ln(e−x2−y2
) = −x2 − y2: ( since ln ez = z).

#5. Solve ln y = 2t + 4, so y = eln y = e2t+4.

#9. ln(y − 1) − ln 2 = x + lnx, so ln(y − 1) = x + lnx + ln 2 and y − 1 = eln(y−1) =
ex+ln x+ln 2 = ex · eln x · eln 2 = 2xex, so y = 1 + 2xex.

#13. a) Solve e−0.3t = 27: (−0.3)t = ln(e−0.3t) = ln(27) = ln(33) = 3 ln 3. Hence t =
− 3 ln 3

0.3 = −10 ln 3.

b) Solve ekt = 1
2 : kt = ln(ekt) = ln( 1

2 ) = − ln 2, so t = − ln 2
k .

c) Solve e(ln 0.2)t = 0.4: (ln 0.2)t = ln
(
e(ln 0.2)t

)
= ln(0.4), so t = ln 0.4

ln 0.2 .

#19. y = e5−7x: find dy
dx . dy

dx = e5−7x d(5−7x)
dx = e5−7x(−7) = −7e5−7x.

#23. y = (x2−2x+2)ex: find dy
dx . dy

dx =
(d(x2−2x+2)

dx

)
ex +(x2−2x+2)d(ex)

dx = (2x−2)ex +
(x2 − 2x + 2)ex = x2 ex.

#27. y = cos
(
e−θ2

)
: find dy

dθ . dy
dθ = −

(
sin

(
e−θ2

)) d

(
e−θ2

)
dθ = −

(
sin

(
e−θ2

)) (
e−θ2

)
d(−θ2)

dθ =

−
(
sin

(
e−θ2

)) (
e−θ2

)
(−2θ) = 2θe−θ2

sin
(
e−θ2

)
.

#37. ln y = ey sinx: find dy
dx . This uses implicit differentiation, or more fundamentally, the

Chain Rule. Differentiate both sides with respect to x, treating y as a function of x.
y′

y = d(ey)
dx sinx + ey d(sin x)

dx = eyy′ sinx + ey cos x. Now solve for y′ in terms of x and

y: y′ = y′yey sinx + yey cos x, or y′ − y′yey sinx = yey cos x or y′ = yey cos x
1−yey sin x .

#41.
∫ (

e3x + 5e−x
)

dx =
∫

e3x dx + 5
∫

e−x dx =
e3x

3
+ 5

e−x

−1
+ C =

e3x

3
− 5e−x + C.

#49.
∫

e
√

r

√
r
dr. Substitute t =

√
r: dt = 1

2r−1/2dr = 1
2
√

r
dr, or dr√

r
= 2dt and our integral

becomes
∫

et(2dt) = 2et + C = 2e
√

r + C.

#55.
∫ π

4

0

(
1 + etan θ

)
sec2 θ dθ. Substitute s = tan θ: ds = sec2 θdθ. Hence our integral

becomes
∫ 1

0

(1 + es) ds = (s + es)
∣∣∣1
0

= (1 + e)− (0 + e0) = 1 + e− 1 = e.
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#63. Solve dy
dt = et sin

(
et − 2

)
, y(ln 2) = 0. First integrate to find all functions satisfying

the differential equation: y =
∫

et sin
(
et − 2

)
dt: substitute s = et: ds = etdt

so y =
∫

sin(s − 2) ds = − cos(s − 2) + C = − cos(et − 2) + C. Now y(ln 2) =

− cos(eln 2 − 2) + C = − cos(2− 2) + C = − cos 0 + C = C − 1. But y(ln 2) is also 0,
so C = 1 and y = 1− cos(et − 2).

#65. d2y

dx2 = 2e−x, y(0) = 1, y′(0) = 0. Integrate twice. dy
dx =

∫
2e−x = 2

e−x

=1
+ C =

−2e−x +C. When x = 0 y′ = 0 and also −2e−0 +C = C− 2e0 = C− 2. Hence C = 2

and y′ = 2−2e−x. But then y =
∫

(2−2e−x)dx = 2x−(−2e−x)+C = 2x+2e−x +C.

Since y(0) = 1, 1 = 2 · 0 + 2e−0 + C = 2 + C so C = 1 and y = 1 + 2x + 2e−x.

#69. Find absolute minimum value of f(x) = x2 ln
(

1
x

)
. Locate critical points: solve 0 =

f ′(x) = 2x ln
(

1
x

)
+ x2

( d( 1
x )

dx
1
x

)
= −2x lnx + x2

(
−x−2 · x

)
= −2x lnx − x = (−x)(1 +

2 ln x). This product vanishes if x = 0 or if 1 + 2 lnx = 0. The point x = 0 is not in
the domain of f so it is not a critical point. Hence the only critical point occurs when
1 + 2 lnx = 0, or lnx = − 1

2 and x = eln x = e−1/2 = 1√
e
. The value of f at x = 1√

e
is

( 1√
e
)2 ln

(
1
1√
e

)
= − 1

e · ln
√

e = − 1
e · ln

(
e1/2

)
= − 1

e ·(
1
2 ) = − 1

2e . We still have to see that

f has a relative maximum. Compute f ′(1) = (−1)
(
1−2 ln 1

)
= −(1−2 ·0) = −1 < 0,

so f is idecreasing to the right of 1√
e

(note 1 <
√

e). Compute f ′(e−2) = −e−2
(
3 +

2 ln(e−2)
)

= −e−2 · (3 − 4) = e−2 > 0 so f is increasing to the left of 1√
e
. As an

alternative to show f has a local minimum at
√

e apply the 2nd Derivative Test.

d2f

dx2 = −
d

(
x(1+2 ln x)

)
dx = −

(
1 · (1+2 lnx)+x · ( 2

x )
)

= −(1+2 lnx+2) = −(3+2 lnx).

Hence f ′′( 1√
e
) = −

(
3 + 2 ln( 1√

e
)
)

= −(3 − 1) = −2 < 0, so the 2nd Derivative Test
shows f has a local maximum at x = 1√

e
. Since f has only the one critical point and

is continuous, the local maximum must be an absolute (or global) maximum.

#71. Draw a graph and determine that the region is bounded on the left by the vertical
line x = 0 (since this is where the two graphs intersect); on the left by x = ln 3
(we were told this); above by y = e2x and below by y = ex. The area is given by∫ ln 3

0

(e2x − ex) dx and this is the formula which should be familiar to you (using

calculus to find the area of planar regions §5.1).

#72. Same ideas as 71. The curves still intersect at x = 0, so the area is
∫ 2 ln 2

0

(ex/2 −

e−x/2) dx.

#73. The length of the graph of y = f(x) between the point
(
a, f(a)

)
and the point

(
b, f(b)

)
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is
∫ b

a

√
1 +

(
f ′(x)

)2
dx. Once you recall this formula (§5.5) and stare at the problem,

you see you are being asked to find a function f(x) such that f ′(x) =
√

1
4ex = ex/2

2 .

f(x) = ex/2 is such a function. Any function of the form ex/2 + C is also such a
function, so the problem has many answers.

#74. From §5.6, we recall that the surface area of the surface of revolution obtained by
revolving the graph s = f(t) about the t axis for a ≤ t ≤ b is given by

2π

∫ b

a

f(t)
√

1 +
(
f ′(t)

)2
dt .

In our case s = x; y = t; f(t) = et+e−t

2 ; a = 0; b = ln 2. f ′(t) = et−e−t

2 ;(
f ′(t)

)2 = e2t−2+e−2t

4 so 1 +
(
f ′(t)

)2 = e2t+2+e−2t

4 =
(

et+e−t
2

)2

, so our integral

is
∫ ln 2

0

et+e−t

2

√(
et+e−t

2

)2

dt =
∫ ln 2

0

(
et+e−t

2

)2

dt =
∫ ln 2

0

e2t+2+e−2t

4
dt = · · ·.
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