§6.3

\#1. a) $e^{\ln 7.2}=7.2$: since $\left(e^{\ln x}=x\right)$.
b) $e^{-\ln x^{2}}=e^{-\ln \left(x^{2}\right)}=\frac{1}{e^{\ln \left(x^{2}\right)}}=\frac{1}{x^{2}}=x^{-2}$.
c) $e^{\ln x-\ln y}=\frac{e^{\ln x}}{e^{\ln y}}=\frac{x}{y}$.
$\# 3$. a) $2 \ln \sqrt{e}=2 \ln \left(e^{1 / 2}\right)=2 \cdot \frac{1}{2} \cdot \ln e=2 \frac{1}{2} \cdot 1=1$.
b) $\ln \left(\ln e^{e}\right)=\ln (e \ln e)=\ln (e \cdot 1)=\ln e=1$.
c) $\ln \left(e^{-x^{2}-y^{2}}\right)=-x^{2}-y^{2}:\left(\right.$ since $\left.\ln e^{z}=z\right)$.
\#5. Solve $\ln y=2 t+4$, so $y=e^{\ln y}=e^{2 t+4}$.
\#9. $\ln (y-1)-\ln 2=x+\ln x$, so $\ln (y-1)=x+\ln x+\ln 2$ and $y-1=e^{\ln (y-1)}=$ $e^{x+\ln x+\ln 2}=e^{x} \cdot e^{\ln x} \cdot e^{\ln 2}=2 x e^{x}$, so $y=1+2 x e^{x}$.
\#13. a) Solve $e^{-0.3 t}=27:(-0.3) t=\ln \left(e^{-0.3 t}\right)=\ln (27)=\ln \left(3^{3}\right)=3 \ln 3$. Hence $t=$ $-\frac{3 \ln 3}{0.3}=-10 \ln 3$.
b) Solve $e^{k t}=\frac{1}{2}: k t=\ln \left(e^{k t}\right)=\ln \left(\frac{1}{2}\right)=-\ln 2$, so $t=-\frac{\ln 2}{k}$.
c) Solve $e^{(\ln 0.2) t}=0.4:(\ln 0.2) t=\ln \left(e^{(\ln 0.2) t}\right)=\ln (0.4)$, so $t=\frac{\ln 0.4}{\ln 0.2}$.
\#19. $y=e^{5-7 x}$: find $\frac{d y}{d x} \cdot \frac{d y}{d x}=e^{5-7 x} \frac{d(5-7 x)}{d x}=e^{5-7 x}(-7)=-7 e^{5-7 x}$.
\#23. $y=\left(x^{2}-2 x+2\right) e^{x}$: find $\frac{d y}{d x} \cdot \frac{d y}{d x}=\left(\frac{d\left(x^{2}-2 x+2\right)}{d x}\right) e^{x}+\left(x^{2}-2 x+2\right) \frac{d\left(e^{x}\right)}{d x}=(2 x-2) e^{x}+$ $\left(x^{2}-2 x+2\right) e^{x}=x^{2} e^{x}$.
\#27. $y=\cos \left(e^{-\theta^{2}}\right)$: find $\frac{d y}{d \theta} \cdot \frac{d y}{d \theta}=-\left(\sin \left(e^{-\theta^{2}}\right)\right) \frac{d\left(e^{-\theta^{2}}\right)}{d \theta}=-\left(\sin \left(e^{-\theta^{2}}\right)\right)\left(e^{-\theta^{2}}\right) \frac{d\left(-\theta^{2}\right)}{d \theta}=$ $-\left(\sin \left(e^{-\theta^{2}}\right)\right)\left(e^{-\theta^{2}}\right)(-2 \theta)=2 \theta e^{-\theta^{2}} \sin \left(e^{-\theta^{2}}\right)$.
$\# 37 . \ln y=e^{y} \sin x$: find $\frac{d y}{d x}$. This uses implicit differentiation, or more fundamentally, the Chain Rule. Differentiate both sides with respect to x, treating y as a function of x. $\frac{y^{\prime}}{y}=\frac{d\left(e^{y}\right)}{d x} \sin x+e^{y} \frac{d(\sin x)}{d x}=e^{y} y^{\prime} \sin x+e^{y} \cos x$. Now solve for y^{\prime} in terms of x and $y: y^{\prime}=y^{\prime} y e^{y} \sin x+y e^{y} \cos x$, or $y^{\prime}-y^{\prime} y e^{y} \sin x=y e^{y} \cos x$ or $y^{\prime}=\frac{y e^{y} \cos x}{1-y e^{y} \sin x}$.
\#41. $\int\left(e^{3 x}+5 e^{-x}\right) d x=\int e^{3 x} d x+5 \int e^{-x} d x=\frac{e^{3 x}}{3}+5 \frac{e^{-x}}{-1}+C=\frac{e^{3 x}}{3}-5 e^{-x}+C$.
\#49. $\int \frac{e^{\sqrt{r}}}{\sqrt{r}} d r$. Substitute $t=\sqrt{r}: d t=\frac{1}{2} r^{-1 / 2} d r=\frac{1}{2 \sqrt{r}} d r$, or $\frac{d r}{\sqrt{r}}=2 d t$ and our integral becomes $\int e^{t}(2 d t)=2 e^{t}+C=2 e^{\sqrt{r}}+C$.
\#55. $\int_{0}^{\frac{\pi}{4}}\left(1+e^{\tan \theta}\right) \sec ^{2} \theta d \theta$. Substitute $s=\tan \theta: d s=\sec ^{2} \theta d \theta$. Hence our integral becomes $\int_{0}^{1}\left(1+e^{s}\right) d s=\left.\left(s+e^{s}\right)\right|_{0} ^{1}=(1+e)-\left(0+e^{0}\right)=1+e-1=e$.
$\# 63$. Solve $\frac{d y}{d t}=e^{t} \sin \left(e^{t}-2\right), y(\ln 2)=0$. First integrate to find all functions satisfying the differential equation: $y=\int e^{t} \sin \left(e^{t}-2\right) d t$: substitute $s=e^{t}: d s=e^{t} d t$ so $y=\int \sin (s-2) d s=-\cos (s-2)+C=-\cos \left(e^{t}-2\right)+C$. Now $y(\ln 2)=$ $-\cos \left(e^{\ln 2}-2\right)+C=-\cos (2-2)+C=-\cos 0+C=C-1$. But $y(\ln 2)$ is also 0, so $C=1$ and $y=1-\cos \left(e^{t}-2\right)$.
\#65. $\frac{d^{2} y}{d x^{2}}=2 e^{-x}, y(0)=1, y^{\prime}(0)=0$. Integrate twice. $\frac{d y}{d x}=\int 2 e^{-x}=2 \frac{e^{-x}}{=1}+C=$ $-2 e^{-x}+C$. When $x=0 y^{\prime}=0$ and also $-2 e^{-0}+C=C-2 e^{0}=C-2$. Hence $C=2$ and $y^{\prime}=2-2 e^{-x}$. But then $y=\int\left(2-2 e^{-x}\right) d x=2 x-\left(-2 e^{-x}\right)+C=2 x+2 e^{-x}+C$. Since $y(0)=1,1=2 \cdot 0+2 e^{-0}+C=2+C$ so $C=1$ and $y=1+2 x+2 e^{-x}$.
\#69. Find absolute minimum value of $f(x)=x^{2} \ln \left(\frac{1}{x}\right)$. Locate critical points: solve $0=$ $f^{\prime}(x)=2 x \ln \left(\frac{1}{x}\right)+x^{2}\left(\frac{\frac{d\left(\frac{1}{x}\right)}{d x}}{\frac{1}{x}}\right)=-2 x \ln x+x^{2}\left(-x^{-2} \cdot x\right)=-2 x \ln x-x=(-x)(1+$ $2 \ln x)$. This product vanishes if $x=0$ or if $1+2 \ln x=0$. The point $x=0$ is not in the domain of f so it is not a critical point. Hence the only critical point occurs when $1+2 \ln x=0$, or $\ln x=-\frac{1}{2}$ and $x=e^{\ln x}=e^{-1 / 2}=\frac{1}{\sqrt{e}}$. The value of f at $x=\frac{1}{\sqrt{e}}$ is $\left(\frac{1}{\sqrt{e}}\right)^{2} \ln \left(\frac{1}{\frac{1}{\sqrt{e}}}\right)=-\frac{1}{e} \cdot \ln \sqrt{e}=-\frac{1}{e} \cdot \ln \left(e^{1 / 2}\right)=-\frac{1}{e} \cdot\left(\frac{1}{2}\right)=-\frac{1}{2 e}$. We still have to see that f has a relative maximum. Compute $f^{\prime}(1)=(-1)(1-2 \ln 1)=-(1-2 \cdot 0)=-1<0$, so f is idecreasing to the right of $\frac{1}{\sqrt{e}}$ (note $\left.1<\sqrt{e}\right)$. Compute $f^{\prime}\left(e^{-2}\right)=-e^{-2}(3+$ $\left.2 \ln \left(e^{-2}\right)\right)=-e^{-2} \cdot(3-4)=e^{-2}>0$ so f is increasing to the left of $\frac{1}{\sqrt{e}}$. As an alternative to show f has a local minimum at \sqrt{e} apply the 2nd Derivative Test. $\frac{d^{2} f}{d x^{2}}=-\frac{d(x(1+2 \ln x))}{d x}=-\left(1 \cdot(1+2 \ln x)+x \cdot\left(\frac{2}{x}\right)\right)=-(1+2 \ln x+2)=-(3+2 \ln x)$. Hence $f^{\prime \prime}\left(\frac{1}{\sqrt{e}}\right)=-\left(3+2 \ln \left(\frac{1}{\sqrt{e}}\right)\right)=-(3-1)=-2<0$, so the 2 nd Derivative Test shows f has a local maximum at $x=\frac{1}{\sqrt{e}}$. Since f has only the one critical point and is continuous, the local maximum must be an absolute (or global) maximum.
\#71. Draw a graph and determine that the region is bounded on the left by the vertical line $x=0$ (since this is where the two graphs intersect); on the left by $x=\ln 3$ (we were told this); above by $y=e^{2 x}$ and below by $y=e^{x}$. The area is given by $\int_{0}^{\ln 3}\left(e^{2 x}-e^{x}\right) d x$ and this is the formula which should be familiar to you (using calculus to find the area of planar regions $\S 5.1$).
\#72. Same ideas as 71. The curves still intersect at $x=0$, so the area is $\int_{0}^{2 \ln 2}\left(e^{x / 2}-\right.$ $\left.e^{-x / 2}\right) d x$.
\#73. The length of the graph of $y=f(x)$ between the point $(a, f(a))$ and the point $(b, f(b))$
is $\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$. Once you recall this formula (§5.5) and stare at the problem, you see you are being asked to find a function $f(x)$ such that $f^{\prime}(x)=\sqrt{\frac{1}{4} e^{x}}=\frac{e^{x / 2}}{2}$. $f(x)=e^{x / 2}$ is such a function. Any function of the form $e^{x / 2}+C$ is also such a function, so the problem has many answers.
\#74. From $\S 5.6$, we recall that the surface area of the surface of revolution obtained by revolving the graph $s=f(t)$ about the t axis for $a \leq t \leq b$ is given by

$$
2 \pi \int_{a}^{b} f(t) \sqrt{1+\left(f^{\prime}(t)\right)^{2}} d t
$$

In our case $s=x ; y=t ; f(t)=\frac{e^{t}+e^{-t}}{2} ; a=0 ; b=\ln 2 . \quad f^{\prime}(t)=\frac{e^{t}-e^{-t}}{2}$; $\left(f^{\prime}(t)\right)^{2}=\frac{e^{2 t}-2+e^{-2 t}}{4}$ so $1+\left(f^{\prime}(t)\right)^{2}=\frac{e^{2 t}+2+e^{-2 t}}{4}=\left(\frac{e^{t}+e-t}{2}\right)^{2}$, so our integral is $\int_{0}^{\ln 2} \frac{e^{t}+e-t}{2} \sqrt{\left(\frac{e^{t}+e-t}{2}\right)^{2}} d t=\int_{0}^{\ln 2}\left(\frac{e^{t}+e^{-t}}{2}\right)^{2} d t=\int_{0}^{\ln 2} \frac{e^{2 t}+2+e^{-2 t}}{4} d t=\cdots$.

