§6.5

- #3. The differential equation is $\frac{dy}{dt} = -0.6y$ and the initial value condition is y(0) = 100 provided we measure time starting from now (and recall that it is already being measured in hours) and y denotes the number of grams of δ -glucono lactone acid. The problem asks for y(1). Solve by finding y(t) and then plug in t = 1. $y = y_0 e^{kt}$, where k = -0.6 and $y_0 = 100$. Hence $y(1) = y_0 e^{k \cdot 1} = 100e^{-0.6}$. Without a calculator, this is an acceptable form for the answer.
- #5. Here L(x) is measuring intensity of light in some unspecified units. The governing equation is $\frac{dL}{dx} = -kL$ where k depends on the water into which you are diving. You are given $L(18) = \frac{1}{2}L(0)$, and you are asked to find x so that $L(x) = \frac{1}{10}L(0)$. As usual, $L = L(0)e^{kx}$. From the equation $L(18) = \frac{1}{2}L(0)$ we find $L(0)e^{18k} = \frac{1}{2}L(0)$, so $e^{18k} = \frac{1}{2}$. Hence $L = L(0)(\frac{1}{2})\frac{x}{18}$. Hence we need to solve $L(0)(\frac{1}{2})\frac{x}{18} = \frac{1}{10}L(0)$, or $(\frac{1}{2})\frac{x}{18} = \frac{1}{10}$, or $2\frac{x}{18} = 10$, or $\frac{x}{18} \ln 2 = \ln 10$, so $x = 18\frac{\ln 10}{\ln 2}$.
- #7. Here the governing equation is $\frac{dB}{dt} = kB$ where B is the number of bacteria and t is the time measured in hours from now. The initial condition is B(0) = 1 and we are given the additional information that B(0.5) = 2B(0) = 2. We are asked for B(24). Now $B = B(0)e^{kt} = e^{kt}$ so our additional information gives us $B(0.5) = e^{0.5k} = 2$. Hence $B = 2^{2t} = 4^t$ and $B(24) = 2^{48}$ or 4^{24} .
- #13. The differential equation is $A = A_0 e^{rt}$ where r is the rate of interest, 4%. a) In 5 years you will have $A = A_0 e^{0.04 \cdot 5} = A_0 e^{0.2}$. b) The doubling time is the time t which satisfies the equation $A(t) = 2A_0$. Hence $A_0 e^{0.04t} = 2A_0$, so $e^{0.04t} = 2$ or $0.04t = \ln 2$ or $t = \frac{\ln 2}{0.04}$. The tripling time is given by the equation $A(t) = 3A_0$ and is solved the same way: $t = \frac{\ln 3}{0.04}$.