$\# 3$. The differential equation is $\frac{d y}{d t}=-0.6 y$ and the initial value condition is $y(0)=100$ provided we measure time starting from now (and recall that it is already being measured in hours) and y denotes the number of grams of δ-glucono lactone acid. The problem asks for $y(1)$. Solve by finding $y(t)$ and then plug in $t=1 . y=y_{0} e^{k t}$, where $k=-0.6$ and $y_{0}=100$. Hence $y(1)=y_{0} e^{k \cdot 1}=100 e^{-0.6}$. Without a calculator, this is an acceptable form for the answer.
$\# 5$. Here $L(x)$ is measuring intensity of light in some unspecified units. The governing equation is $\frac{d L}{d x}=-k L$ where k depends on the water into which you are diving. You are given $L(18)=\frac{1}{2} L(0)$, and you are asked to find x so that $L(x)=\frac{1}{10} L(0)$. As usual, $L=L(0) e^{k x}$. From the equation $L(18)=\frac{1}{2} L(0)$ we find $L(0) e^{18 k}=\frac{1}{2} L(0)$, so $e^{18 k}=\frac{1}{2}$. Hence $L=L(0)\left(\frac{1}{2}\right)^{\frac{x}{18}}$. Hence we need to solve $L(0)\left(\frac{1}{2}\right)^{\frac{x}{18}}=\frac{1}{10} L(0)$, or $\left(\frac{1}{2}\right)^{\frac{x}{18}}=\frac{1}{10}$, or $2^{\frac{x}{18}}=10$, or $\frac{x}{18} \ln 2=\ln 10$, so $x=18 \frac{\ln 10}{\ln 2}$.
$\# 7$. Here the governing equation is $\frac{d B}{d t}=k B$ where B is the number of bacteria and t is the time measured in hours from now. The initial condition is $B(0)=1$ and we are given the additional information that $B(0.5)=2 B(0)=2$. We are asked for $B(24)$. Now $B=B(0) e^{k t}=e^{k t}$ so our additional information gives us $B(0.5)=e^{0.5 k}=2$. Hence $B=2^{2 t}=4^{t}$ and $B(24)=2^{48}$ or 4^{24}.
$\# 13$. The differential equation is $A=A_{0} e^{r t}$ where r is the rate of interest, 4\%. a) In 5 years you will have $A=A_{0} e^{0.04 \cdot 5}=A_{0} e^{0.2}$. b) The doubling time is the time t which satisfies the equation $A(t)=2 A_{0}$. Hence $A_{0} e^{0.04 t}=2 A_{0}$, so $e^{0.04 t}=2$ or $0.04 t=\ln 2$ or $t=\frac{\ln 2}{0.04}$. The tripling time is given by the equation $A(t)=3 A_{0}$ and is solved the same way: $t=\frac{\ln 3}{0.04}$.

