\#7. For $\lim _{t \rightarrow 0} \frac{\sin t^{2}}{t}$, the form is $\frac{0}{0}$ so l'Hôpital's Rule applies. First calculate $\frac{d \sin t^{2}}{d t}=$ $-\left(\cos t^{2}\right) \frac{d t^{2}}{d t}=(-2 t) \cos t^{2}$, so our limit is $\lim _{t \rightarrow 0} \frac{(-2 t) \cos t^{2}}{1}=\lim _{t \rightarrow 0}-(2 t) \cos t^{2}=0$.
\#13. Find $\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{1-\sin \theta}{1+\cos 2 \theta}$. Since $\sin \left(\frac{\pi}{2}\right)=-1$ and $\cos \left(2 \frac{\pi}{2}\right)=-1$, the form is $\frac{0}{0}$. Hence l'Hôpital's Rule applies and our limit is $\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{-\cos \theta}{-2 \sin (2 \theta)}$. Since $\cos \left(\frac{\pi}{2}\right)=0=\sin \left(2 \frac{\pi}{2}\right)$, this second limit also has the form $\frac{0}{0}$ and l'Hôpital's Rule applies. $\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{\sin \theta}{-4 \cos (2 \theta)}=$ $\frac{1}{(-4)(-1)}=\frac{1}{4}$.
\#15. Find $\lim _{x \rightarrow 0} \frac{x^{2}}{\ln (\sec x)}$. Since $\sec 0=1, \ln (\sec 0)=0$ so we have the form $\frac{0}{0}$ and l'Hôpital's Rule applies. To apply l'Hôpital's Rule, we need to compute $\frac{d \ln (\sec x)}{d x}=\frac{\frac{d \sec x}{d x}}{\sec x}=$ $(\cos x)(\sec x)(\tan x)=\tan x$. Our limit is $\lim _{x \rightarrow 0} \frac{2 x}{\tan x}$ which again has the form $\frac{0}{0}$. There are at least two ways to proceed. First apply l'Hôpital's Rule: $\lim _{x \rightarrow 0} \frac{2}{\sec ^{2} x}=\frac{2}{1}=2$. A second way is to simplify first: $\lim _{x \rightarrow 0} \frac{2 x}{\tan x}=\lim _{x \rightarrow 0}(\cos x) \frac{2 x}{\sin x}=(2 \cos x) \lim _{x \rightarrow 0} \frac{x}{\sin x}$ and we have calculated $\lim _{x \rightarrow 0} \frac{x}{\sin x}=1$, so our limit is $(2 \cos (0)) \cdot 1=2$.
\#19. Find $\lim _{x \rightarrow \frac{\pi}{2}-}\left(x-\frac{\pi}{2}\right) \sec x$. The form if $0 \cdot \infty$ so we write $\lim _{x \rightarrow \frac{\pi}{2}-}\left(x-\frac{\pi}{2}\right) \sec x=\lim _{x \rightarrow \frac{\pi}{2}-} \frac{x-\frac{\pi}{2}}{\cos x}$ and this limit has the form $\frac{0}{0}$. By l'Hôpital's Rule, $\lim _{x \rightarrow \frac{\pi}{2}-} \frac{x-\frac{\pi}{2}}{\cos x}=\lim _{x \rightarrow \frac{\pi}{2}-} \frac{1}{-\sin x}$ and since $\sin \left(\frac{\pi}{2}\right)=1$, our limit is -1 .
\#27. Find $\lim _{x \rightarrow 0^{+}} \frac{\ln \left(x^{2}+2 x\right)}{\ln x}$ which has the form $\frac{\infty}{\infty}$. To apply l'Hôpital's Rule, compute $\frac{d \ln \left(x^{2}+2 x\right)}{d x}=\frac{2 x+2}{x^{2}+2 x}$ so $\lim _{x \rightarrow 0^{+}} \frac{\ln \left(x^{2}+2 x\right)}{\ln x}=\lim _{x \rightarrow 0^{+}} \frac{\frac{2 x+2}{x^{2}+2 x}}{\frac{1}{x}}=\lim _{x \rightarrow 0^{+}} \frac{x(2 x+2)}{x^{2}+2 x}=\lim _{x \rightarrow 0^{+}} \frac{2 x+2}{x+2}=$ $\frac{2}{2}=1$.
\#31. Find $\lim _{x \rightarrow \infty}(\ln (2 x)-\ln (x+1))$ which has the form $\infty-\infty$. Write $\lim _{x \rightarrow \infty}(\ln (2 x)-\ln (x+$ 1) $)=\lim _{x \rightarrow \infty}(\ln (x+1))\left(\frac{\ln (2 x)}{\ln (x+1)}-1\right)$. Compute $\lim _{x \rightarrow \infty} \frac{\ln (2 x)}{\ln (x+1)}$ using l'Hôpital's Rule: $\lim _{x \rightarrow \infty} \frac{\ln (2 x)}{\ln (x+1)}=\lim _{x \rightarrow \infty} \frac{\frac{2}{2 x}}{\frac{1}{x+1}}=1$ so this time we have the form $\infty \cdot 0$ and we rewrite again: $\lim _{x \rightarrow \infty}(\ln (2 x)-\ln (x+1))=\lim _{x \rightarrow \infty} \frac{\frac{\ln (2 x)}{\ln (x+1)}-1}{\frac{1}{\ln (x+1)}}$ which has the form $\frac{0}{0}$. Compute $\frac{d \frac{\ln (2 x)}{\ln (x+1)}}{d x}=$

$$
\begin{aligned}
& \frac{\frac{d \ln (2 x)}{d x} \ln (x+1)-(\ln 2 x) \frac{d \ln (x+1)}{d x}}{(\ln (x+1))^{2}}=\frac{\frac{\ln (x+1)}{x}-\frac{\ln (2 x)}{x+1}}{(\ln (x+1))^{2}} ; \frac{d \frac{1}{\ln (x+1)}}{d x}=-\frac{1}{(x+1)(\ln (x+1))^{2}} \text { so } \lim _{x \rightarrow \infty}(\ln (2 x)- \\
& \ln (x+1))=\lim _{x \rightarrow \infty} \frac{\frac{\frac{\ln (x+1)}{x}-\frac{\ln (2 x)}{x+1}}{-\frac{(\ln (x+1))^{2}}{(x+1)(\ln (x+1))^{2}}}}{-1}=-\lim _{x \rightarrow \infty} \frac{(x+1) \ln (x+1)}{x}-\ln (2 x) . \text { This looks so much }
\end{aligned}
$$

like the original problem that one feels one is making no progress. We try a different approach. Note $e^{\lim _{x \rightarrow \infty}(\ln (2 x)-\ln (x+1))}=\lim _{x \rightarrow \infty} e^{\ln (2 x)-\ln (x+1)}=\lim _{x \rightarrow \infty} \frac{2 x}{x+1}$. This last limit can be computed using l'Hôpital's Rule again to get 2 . Since $e^{\lim _{x \rightarrow \infty}(\ln (2 x)-\ln (x+1))}=$ 2, $\lim _{x \rightarrow \infty}(\ln (2 x)-\ln (x+1))=\ln 2$.
\#37. Find $\lim _{x \rightarrow \infty} \int_{x}^{2 x} \frac{1}{t} d t=\lim x \rightarrow \infty \ln (2 x)-\ln x$. Just as in 31 , this last limit is $\ln 2$.
\#42. $\lim _{x \rightarrow \infty} x^{2} e^{-x}=\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}}$. l'Hôpital's Rule applies $\left(\frac{\infty}{\infty}\right)$ to get $\lim _{x \rightarrow \infty} \frac{2 x}{e^{x}}$ which still has form $\frac{\infty}{\infty}$, so $\lim _{x \rightarrow \infty} \frac{2}{e^{x}}=0$.
\#43. Find $\lim _{x \rightarrow 1^{+}} x^{\frac{1}{1-x}}=\lim _{x \rightarrow 1^{+}} e^{\frac{\ln x}{1-x}}=e^{\lim _{x \rightarrow 1^{+}} \frac{\ln x}{1-x}}$. We compute $\lim _{x \rightarrow 1^{+}} \frac{\ln x}{1-x}$ using l'Hôpital's Rule, so compute $\lim _{x \rightarrow 1^{+}} \frac{\frac{1}{x}}{-x}=-1$. Hence $\lim _{x \rightarrow 1^{+}} x^{\frac{1}{1-x}}=e^{-1}$.
\#51. Find $\lim _{x \rightarrow 0^{+}} x^{x}=\lim _{x \rightarrow 0^{+}} e^{x \ln x}=e^{\lim _{x \rightarrow 0^{+}} x \ln x}$, so we compute $\lim _{x \rightarrow 0^{+}} x \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{x}}$ and now we may apply l'Hôpital's Rule. $\lim _{x \rightarrow 0^{+}} x \ln x=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{-1}{x^{2}}}=\lim _{x \rightarrow 0^{+}}-x=0$. Hence $\lim _{x \rightarrow 0^{+}} x^{x}=e^{0}=1$.
\#53. Find $\lim _{x \rightarrow \infty} \frac{\sqrt{9 x+1}}{\sqrt{x+1}}$. l'Hôpital's Rule applies and $\frac{d \sqrt{9 x+1}}{d x}=\frac{9}{2 \sqrt{9 x+1}}$ and $\frac{d \sqrt{x+1}}{d x}=$ $\frac{1}{2 \sqrt{x+1}}$ so we see $\lim _{x \rightarrow \infty} \frac{\sqrt{9 x+1}}{\sqrt{x+1}}=\lim _{x \rightarrow \infty} \frac{\frac{9}{2 \sqrt{9 x+1}}}{\frac{1}{2 \sqrt{x+1}}}=9 \lim _{x \rightarrow \infty} \frac{\sqrt{x+1}}{\sqrt{9 x+1}}=\frac{9}{\lim _{x \rightarrow \infty} \frac{\sqrt{9 x+1}}{\sqrt{x+1}}}$. If $L=\lim _{x \rightarrow \infty} \frac{\sqrt{9 x+1}}{\sqrt{x+1}}$ this shows $L^{2}=9$. Somewhat more easily, $L^{2}=\left(\lim _{x \rightarrow \infty} \frac{\sqrt{9 x+1}}{\sqrt{x+1}}\right)^{2}=$ $\lim _{x \rightarrow \infty} \frac{9 x+1}{x+1}=9$. Since $\frac{\sqrt{9 x+1}}{\sqrt{x+1}}>0$ for large x, we see $L=3$ or the limit does not exist, but we have no theorems to help us understand which of these is the case. To actually compute the limit, proceed as follows. Since $\frac{\sqrt{9 x+1}}{\sqrt{x+1}}>0$ for large x $\lim _{x \rightarrow \infty} \frac{\sqrt{9 x+1}}{\sqrt{x+1}}=\sqrt{\lim _{x \rightarrow \infty} \frac{9 x+1}{x+1}} \sqrt{9}=3$.
\#57. Calculation b) is correct and follows from the usual quotient rule for limits. Calculation a) is an incorrect application of l'Hôpital's Rule.
\#63. Find $\lim _{k \rightarrow \infty}\left(1+\frac{r}{k}\right)^{k}=\lim _{k \rightarrow \infty} e^{k \ln \left(1+\frac{r}{k}\right)}=e^{\lim _{k \rightarrow \infty} k \ln \left(1+\frac{r}{k}\right)}$. Compute $\lim _{k \rightarrow \infty} k \ln \left(1+\frac{r}{k}\right)=$ $\lim _{k \rightarrow \infty} \frac{\ln \left(1+\frac{r}{k}\right)}{\frac{1}{k}}=\lim _{k \rightarrow \infty} \frac{\frac{\frac{-r}{k^{2}}}{1+\frac{r}{k}}}{\frac{-1}{k^{2}}}=r \lim _{k \rightarrow \infty} \frac{1}{1+\frac{r}{k}}=r$. Hence $\lim _{k \rightarrow \infty}\left(1+\frac{r}{k}\right)^{k}=e^{r}$.

