§6.7

\#1. Any power of x grows more slowly that a^{x} for any $a>1$. For any $a>1, \log _{a} x$ grows more slowly than any power of x. Hence a) and c) grow more slowly than $e^{x} ; \log _{10} x$ grows more slowly than x and hence more slowly than e^{x}. Since $\sin x$ is bounded x^{2} and $x^{2}+\sin ^{2} x$ grow at the same rate. Hence $x^{2}+\sin ^{2} x$ grows more slowly than e^{x}. Both e^{x} and $e^{x} / 2$ grow at the same rate. Finally, if $a>b>1 a^{x}$ grows faster than b^{x}. Since $3 / 2<e,(3 / 2)^{x}$ grows more slowly than e^{x}. Since $4>e, 4^{x}$ grows faster than e^{x}. Since $\sqrt{e}<e, e^{x / 2}$ grows more slowly than e^{x}.
\#3. $x^{2}+4 x, \sqrt{x^{4} x^{3}},(x+3)^{2}, 8 x^{2}$ and x^{2} all grow at the same rate. $x^{5}-x^{2}$ grows faster than $x^{2} .2^{x}$ grows faster than any power of x, hence faster than $x^{2} . x^{3} e^{-x}$ goes to 0 as $x \rightarrow \infty$ so it geows more slowly than x^{2}. Finally, x grows faster than $\ln x$ so x^{2} grows faster than $x \ln x$.
$\# 5 . \ln x$ and $\log _{a} x$ grow at the same rate. Hence $\log _{3} x, \ln 2 x=\ln 2+\ln x, \ln \sqrt{x}=\frac{1}{2} \ln x$, $5 \ln x$ and $\ln x$ all grow at the same rate. $\ln x$ grow more slowly that x and $\sqrt{x}=x^{1 / 2}$. $\ln x$ grows more slowly than e^{x}. Finally $\frac{1}{x}$ goes to 0 as $x \rightarrow \infty$ and so grows more slowly than $\ln x$.
\#7. e^{x} and $e^{x / 2}$ grow at the same rate; since $e<4, e^{x}$ grows more slowly than 4^{x} which is less than both x^{x} and $(\ln x)^{x}$, so e^{x} grows more slowly than $(\ln x)^{x}$. Finally, $(\ln x)^{x}$ grows more slowly than x^{x} since $\lim _{\rightarrow \infty} x \frac{x^{x}}{(\ln x)^{x}}=\infty$.
\#9. a) $\lim _{x \rightarrow \infty} \frac{x}{x}=1$ so false, b) $\lim _{x \rightarrow \infty} \frac{x}{x+5}=1$ so false, c) $\frac{x}{x+5}<1$ for large x so true, d) $\frac{x}{2 x}=\frac{1}{2}$, so true, e) $\lim _{x \rightarrow \infty} \frac{e^{x}}{e^{2 x}}=\lim _{x \rightarrow \infty} \frac{1}{e^{x}}=0$ so true, f) $\frac{x+\ln x}{x}:$ since $\lim _{x \rightarrow \infty} \frac{\ln x}{x}=0$, for all large $x, \frac{\ln x}{x}<1$ so $\frac{x+\ln x}{x}<2$ for all large x, so $x+\ln x=O(x)$. g) $\lim _{x \rightarrow \infty} \frac{\ln x}{\ln (2 x)}=1$ so $\ln x \neq o(\ln (2 x))$. h) $\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+5}}{x}=1$ so for all sufficiently large $x, \frac{\sqrt{x^{2}+5}}{x}<2$, so $\sqrt{x^{2}+5}=O(x)$.
\#23.a) $\log _{2} n$ grows more slowly than any power of n, so $n \log _{2} n$ grows more slowly than $n^{3 / 2}$. Similarly, one can see $n\left(\log _{2} n\right)^{2}$ grow more slowly than $n^{3 / 2}$. Finally, $\log _{2} n$ grow more slowly than $\left(\log _{2} n\right)^{2}$, so $n \log _{2} n$ grows the most slowly of the three given functions.

