§6.7

- #1. Any power of x grows more slowly that a^x for any a > 1. For any a > 1, $\log_a x$ grows more slowly than any power of x. Hence a) and c) grow more slowly than e^x ; $\log_{10} x$ grows more slowly than x and hence more slowly than e^x . Since $\sin x$ is bounded x^2 and $x^2 + \sin^2 x$ grow at the same rate. Hence $x^2 + \sin^2 x$ grows more slowly than e^x . Both e^x and $e^x/2$ grow at the same rate. Finally, if a > b > 1 a^x grows faster than b^x . Since 3/2 < e, $(3/2)^x$ grows more slowly than e^x . Since 4 > e, 4^x grows faster than e^x . Since $\sqrt{e} < e$, $e^{x/2}$ grows more slowly than e^x .
- #3. $x^2 + 4x$, $\sqrt{x^4x^3}$, $(x+3)^2$, $8x^2$ and x^2 all grow at the same rate. $x^5 x^2$ grows faster than x^2 . 2^x grows faster than any power of x, hence faster than x^2 . x^3e^{-x} goes to 0 as $x \to \infty$ so it geows more slowly than x^2 . Finally, x grows faster than $\ln x$ so x^2 grows faster than $x \ln x$.
- #5. $\ln x$ and $\log_a x$ grow at the same rate. Hence $\log_3 x$, $\ln 2x = \ln 2 + \ln x$, $\ln \sqrt{x} = \frac{1}{2} \ln x$, $5 \ln x$ and $\ln x$ all grow at the same rate. $\ln x$ grow more slowly that x and $\sqrt{x} = x^{1/2}$. $\ln x$ grows more slowly than e^x . Finally $\frac{1}{x}$ goes to 0 as $x \to \infty$ and so grows more slowly than $\ln x$.
- #7. e^x and $e^{x/2}$ grow at the same rate; since e < 4, e^x grows more slowly than 4^x which is less than both x^x and $(\ln x)^x$, so e^x grows more slowly than $(\ln x)^x$. Finally, $(\ln x)^x$ grows more slowly than x^x since $\lim_{x \to \infty} x \frac{x^x}{(\ln x)^x} = \infty$.
- #9. a) $\lim_{x \to \infty} \frac{x}{x} = 1$ so false, b) $\lim_{x \to \infty} \frac{x}{x+5} = 1$ so false, c) $\frac{x}{x+5} < 1$ for large x so true, d) $\frac{x}{2x} = \frac{1}{2}$, so true, e) $\lim_{x \to \infty} \frac{e^x}{e^{2x}} = \lim_{x \to \infty} \frac{1}{e^x} = 0$ so true, f) $\frac{x+\ln x}{x}$: since $\lim_{x \to \infty} \frac{\ln x}{x} = 0$, for all large x, $\frac{\ln x}{x} < 1$ so $\frac{x+\ln x}{x} < 2$ for all large x, so $x+\ln x = O(x)$. g) $\lim_{x \to \infty} \frac{\ln x}{\ln(2x)} = 1$ so $\ln x \neq o(\ln(2x))$. h) $\lim_{x \to \infty} \frac{\sqrt{x^2+5}}{x} = 1$ so for all sufficiently large x, $\frac{\sqrt{x^2+5}}{x} < 2$, so $\sqrt{x^2+5} = O(x)$.
- #23.a) $\log_2 n$ grows more slowly than any power of n, so $n \log_2 n$ grows more slowly than $n^{3/2}$. Similarly, one can see $n(\log_2 n)^2$ grow more slowly than $n^{3/2}$. Finally, $\log_2 n$ grow more slowly than $(\log_2 n)^2$, so $n \log_2 n$ grows the most slowly of the three given functions.